Tetrahedron Letters 55 (2014) 1196-1198

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Thionium ion promoted Michael acceptor: a sequence of Pummerer/Michael reactions for the stereoselective synthesis of 5-(1-(arylthio)vinyl)-oxazolines

Shimin Xu, Qianyun Zhang, Hongwei Zhou*

Department of Chemistry, Zhejiang University (Campus Xixi), Hangzhou 310028, People's Republic of China

ARTICLE INFO

Received 23 October 2013

Revised 17 December 2013

Accepted 27 December 2013

Available online 4 January 2014

Article history:

Keywords: Oxazolines Pummerer reaction Michael reaction Cyclization

ABSTRACT

The synthesis of polysubstituted oxazolines is of great interest due to the synthetic and pharmaceutical importance. We developed a sequence of Pummerer/Michael reactions for the stereoselective synthesis of 5-(1-(arylthio)vinyl)-oxazolines.

© 2014 Elsevier Ltd. All rights reserved.

The oxazolines are arguably one of the most ubiquitous heterocyclic compounds used in asymmetric catalysis as chiral ligands.¹ Besides, oxazoline derivatives are also usually encountered as biologically active compounds in pharmaceutical fields.²

Generally, oxazolines could be prepared by the reaction of carboxylic acids (or derivatives) with amino alcohols.³ However, in some cases, the highly substituted amino alcohols are not so available and therefore the synthesis of polysubstituted oxazolines is still meaningful for organic community.

During our research on organosulfur chemistry,⁴ we developed a Pummerer-type cyclization to prepare 1,3-oxazoles.^{4a} Herein we wish to report a stereoselective cyclization of vinyl sulfoxide under the Pummerer conditions, to afford polysubstituted oxazolines (Scheme 1).

As a first attempt, we chose N-(2-methyl-3-(p-tolylsulfinyl)cyclohex-2-enyl) acetamide (**1a**) as the starting material, which could be easily prepared via a Mitsunobu process, acylation and oxidation of 2-methyl-3-(p-tolylthio)cyclohex-2-enol (Scheme 2).

Based on the previous investigation, we initiated our study by treatment of **1a** with acetic anhydride and trifluoroacetic anhydride (TFAA) in dichloromethane at room temperature and obtained 2,7*a*-dimethyl-7-(*p*-tolylthio)-3*a*,4,5,7*a*-tetrahydrobenzo[*d*]oxazole (**2a**) in 15% and 48% yield, respectively (Scheme 3).

The stereochemistry of the product **2a** was established by NOESY experiment which clearly showed an NOE effect between the H1 and the methyl proton (Fig. 1).

We believed that the treatment of **1a** with TFAA offers an active vinyl thionium ion A, which could be thought of as a Michael acceptor. The oxygen of amide attacks A intramolecularly, afford-

etrahedro

^{*} Corresponding author. Fax: +86 571 8892 0271. *E-mail address:* zhouhw@zju.edu.cn (H. Zhou).

^{0040-4039/\$ -} see front matter \odot 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.12.112

Scheme 3.

Figure 1. NOESY experiment of 2a.

ing the sulfonium B; the sulfonium B gives product **2a** via a proton elimination (Scheme 4).

Next, we optimized the reaction by testing the electrophiles and examining the temperature effect. Acetyl chloride and trifluoromethanesulfonic anhydride offered unidentified mixture (Table 1, entries 1 and 2) and the reaction favored lower temperature (Table 1, entries 5–8); we tested the addition of triethylamine or pyridine for improving the reaction but only got sluggish results (Table 1, entries 9 and 10). Therefore, the reaction in the presence of TFAA in DCM at -20 °C was established as the standard condition to explore the reaction scope (Table 1, entry 6).

With this result in hand, we examined the scope of the reaction and obtained 5-(1-(arylthio)vinyl)-oxazolines in moderate to good yields. The results summarized in Table 2 showed that aryl amide gave slightly higher yield than the similar alkyl amide (entries 1 and 2); the urea type of amide offered lower yield (entry 7); and unexpectedly, the 5-position substituted substrates did not block the proton elimination of the sulfonium (entries 5 and 6).⁵

5-(1-(Arylthio)vinyl)-oxazolines, containing a vinyl sulfane moiety, could be used in the transformations such as hydrolysis to ketones,^{4a} [3+2] cycloaddition to cyclopentanones,⁶ glyoxylateene reaction to α -hydroxy esters,⁷ and cross coupling reaction to olefins,⁸ besides as the oxazoline derivative. Thus, it may be reasonably envisioned that the 5-(1-(arylthio)vinyl)-oxazolines might also be useful building blocks in organic synthesis.

Table 1

Optimization of the reaction^{a,b}

Entry	Electrophile	Temp (°C)	Base	Yield (%)
1	MeCOCl	rt	_	0
2	Tf ₂ O	rt	_	0
3	Ac ₂ O	rt	-	18
4	TFAA	rt	-	48
5	TFAA	0	_	62
6	TFAA	-20	-	75
7	TFAA	-40	-	70
8	TFAA	-60	-	72
9	TFAA	-20	Et₃N	22
10	TFAA	-20	Pyridine	28

 $^{\rm a}$ All reactions were conducted on a 0.5 mmol scale and monitored by TLC. $^{\rm b}$ Isolated yields.

 Table 2

 Synthesis of 5-(1-(arylthio)vinyl)-oxazolines^{a,b}

1197

^a All reactions were conducted on a 0.5 mmol scale and monitored by TLC. ^b Isolated yields.

In summary, we have developed a mild procedure for the synthesis of 5-(1-(arylthio)vinyl)-oxazolines. Studies on the

application and expansion of Pummerer/Michael sequence are currently in progress.

Acknowledgment

Financial support from Natural Science Foundation of China (No. 20972134) is greatly appreciated.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 12.112.

References and notes

- For the reviews, see: (a) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505;
 (b) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2011, 111, PR284; (c) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.
- (a) Porpiglia, F.; Destefanis, P.; Fiori, C.; Fontana, D. Urology 2000, 56, 579; (b) Biggar, W. D.; Gingras, M.; Fehlings, D. L.; Harris, V. A.; Steele, C. A. J. Pediatr. 2001, 138, 45.
- (a) Wiley, R. H.; Bennett, L. L. *Chem. Rev.* **1949**, 44, 447; (b) Goud, D. R.; Pathak, U. *Synthesis* **2012**, 3678; (c) Pirrung, M. C.; Tumey, L. N. *J. Comb. Chem.* **2000**, *2*, 675; (d) Kronek, J.; Lustoň, J.; Bóhme, F. *Chem. Listy* **1998**, 92, 175.
- (a) Xu, G.; Chen, K.; Zhou, H. Synthesis 2009, 3565; (b) Zhou, H.; Xie, Y.; Ren, L.; Su, R. Org. Lett. 2010, 12, 356; (c) Zhou, H.; Zhu, D.; Xie, Y.; Huang, H.; Wang, K. J. Org. Chem. 2010, 75, 2706; (d) Zhou, H.; Xie, Y.; Ren, L.; Wang, K. Adv. Synth. Catal. 2009, 351, 1289; (e) Zhou, H.; Xing, Y.; Yao, J.; Chen, J. Org. Lett. 2010, 12, 3674; (f) Zhou, H.; Xing, Y.; Yao, J.; Lu, Y. J. Org. Chem. 2011, 76, 4582.
- 5. General procedure for the synthesis of **2a**: To a solution of N-(2-methyl-3-(p-tolylsulfinyl)cyclohex-2-enyl)acetamide (**1a**, 0.5 mmol) in DCM (3 mL) under N₂ atmosphere at -20 °C was added TFAA (158 mg, 0.75 mmol). After stirred for 30 min, the reaction mixture was diluted with 20 mL of water and extracted with DCM (2 × 20 mL). The extract was washed with water (2 × 20 mL) and dried with anhydrous Na₂SO₄. After evaporation, chromatography on silica gel (hexane/ethyl acetate: 4:1) of the reaction mixture afforded **2a** (103 mg, 75% yield).
- Masuya, K.; Domon, K.; Tanino, K.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 1724.
- 7. Terada, M.; Matsukawa, S.; Mikami, K. J. Chem. Soc., Chem. Commun. 1993, 327.
- 8. Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. Synthesis 1987, 1034.