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Abstract: A new molybdenum(l/) complex (E), generated in situ from Mo(CO) 6 by sequential treatment 
with PhCHz(Et)3N+C1" and CF3SOaAg (3 equiv.), has been found to catalyze the substitution of allylic 
acetates with MeOH (4 ---* 5 '-- 6; 7 ----, 8; 9 ---* 10) at rt. The reaction predominantly occurs with an 
overall retention of configuration (17 ---, 19 and 18 ---, 20). 

Allylic substitution is one of the classical reactions of organic chemistry. However, due to a 

number of competing pathways (SN2', SN2, SN1, and elimination), this process is not sufficiently 

selective in its original form. 4 In contrast, its transition metal-catalyzed version is characterized by an 

extraordinary selectivity and predictability. The latter transformation has been shown to proceed via the 

~3-complex 2, which then reacts with a nueleophile (Scheme 1). 5 Aside from the notorious Pd(0), 6 

several other transition metal complexes have been found to catalyze or mediate this reaction, namely 

Mo, 7,s W, 9 Fe, 1° Co, 11 and Ni. 12 In this preliminary communication, we report on a novel molybdenum 

complex that can catalyze aUylic substitution under very mild conditions. 
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Molybdenum hexacarbonyl is a less efficient catalyst for allylic substitution than 

Pd(0)-complexes. As a result, high temperatures (e.g., refluxing in toluene) and long reaction times (>5h) 

are usually required. 7 We reasoned that a more reactive complex might be obtained by modification of 

the ligands and/or the valency of the metal. 

On heating with PhCH2(Et)3N+CI - in DME, Mo(CO) 6 was converted into the complex A 

(Scheme 2), 13 which was then treated with silver triflate at -30 °C in order to prepare complex B. 

However, in contrast to the behavior of other Ag(I) salts, 14 we observed a spontaneous reduction of Ag(I) 

to Ag(0), generating a paramagnetic species, for which structure C can be suggested. The latter Mo(I) 

complex is unstable and disproportionates into Mo(0) and Mo(II) (C ---" A + D). Second equivalent of 

TfOAg effected further oxidation; 3 equivs, in total were required to generate the diamagnetic complex 

whose structure can be formulated as E. 15,16 

The reaction of the acetate 4 with MeOH in CH2CI 2 in the presence of 10 tool% of E at rt/4h 

was found to produce ether 5 (12% conversion; Scheme 3). 17"19 The allylic isomer 6 turned out to react 

faster (91% conversion at rt/4h), affording the same product. Similar catalytic reactions have been 
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SP..,heme 2: Bn = PhCH2; TfO = CF3SO 3 

Mo(CO) e 
TIOAg 

BnEt3N+CI'~ r BnEt3N+[Mo(CO)sCI]" ~ MoI(CO)sCI + BnEtzN+TfO" + Ag(0) 
(- co) A 

TfOAg 
BnEt3N+[Mo(CO)sOTf]" [Mo"(CO)sCI] + "OTf ~ [Mo"(CO)sOTf] + "OTf 

B D (- AgCI) E 

accomplished with allylic acetates 7, 9, 17, and 18. In each case only the isomer with a better stabilized 

double bond (i.e. more substituted or conjugated) has been formed (5, 8, 10, 19, and 20, respective- 

ly). Is,2° Notable is the difference in the reaction rates (expressed as conversion) of 4 vs 6 and 7 vs 9. 21,~ 

Scheme 3: (a), [Mo]-complex E (10 tool%), MeOH, CH2CI2, DME, rt, 4h. Conversion (%) 
was determined by 1H NMR spectra of the crude products obtained after 4 h. 
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In contrast to the readily reacting substrates shown above, other allylic acetates, namely 11 - 

16 turned out either to be inert or to react sluggishly (with a stoichiornetric amount of E). ~ All this 

behavior suggests an SN1 component in the transition state for ionization. ~,28 

Ph ~ O A c  I II AcO . 
H AcO 

11 12 13, 31~OAc 15, exo-OAc 
14, 3~x-OAc 16, endo-OAc 

Stereochemistry of this allylic substitution was elucidated with the aid of epimeric acetates 

17 and 18. In both instances, predominant retention of configuration was observed (Scheme 4). Thus, the 

equatorial acetate 17 furnished mainly the ether 19, whereas the faster reacting axial acetate 18 gave rise 

to the epimer 20 as the major product. 2° These results exclude a common intermediate, such as an 

uncoordinated allylic cation, and suggest that molybdenum is involved via a facially selective 

coordination. The overall retention of configuration can, a priori ,  originate either from double inversion 

or double retention. The latter pathway would, presumably, involve coordination of the reagent to the 

leaving group 29,30 so that increasing the Lewis basicity of the carbonyl oxygen should accelerate the 

reaction, z5c,29 However, the corresponding carbamates turned out to react considerably more slowly than 

the acetates 4, 7, and 17, while the overall stereechemistry remained essentially identical to that of the 

acetates. 31 These results appear to support the double inversion as the dominant mechanism, analogous to 

the Pd-catalyzed substitution. 6 
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Scheme 4: (a) see Scheme 3 

17 1 a 18 

19 20 

Conversion Ratio 
Compound (%) 19 : 20 

17 61 69 : 31 

18 100 19 : 81 

In conclusion: We have developed an efficient molybdenum catalyst capable of promoting 

allylic substitution of reasonably reactive allylic acetates (4, 6, 7, 9, 17, and 18) with methanol 17 as a 

typical O-nucleophile 32 at rt. Predominant retention of configuration has been observed. 
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