

Available online at www.sciencedirect.com

Chemical Physics Letters 368 (2003) 594-600

www.elsevier.com/locate/cplett

Reactivity of HNCO with NH_3 at low temperature monitored by FTIR spectroscopy: formation of $NH_4^+OCN^-$

S. Raunier^{*}, T. Chiavassa¹, F. Marinelli, A. Allouche, J.P. Aycard

Physique des Interactions Ioniques et Moléculaires, UMR 6633, Boîte 252, Université de Provence, F-13397 Marseille Cedex 20, France

Received 16 October 2002; in final form 27 November 2002

Abstract

The reactivity of isocyanic acid (HNCO) with solid ammonia (NH₃) was first studied at 10 K, using FTIR spectroscopy. The ammonium isocyanate (NH₄⁺OCN⁻) is formed from a reaction between HNCO and NH₃. Vibrational band assignments for NH₄⁺OCN⁻ have been given. On the other hand, when HNCO is adsorbed on amorphous NH₃ film, the reaction does not occur. Warming up of this sample at 90 K induces the NH₄⁺OCN⁻ formation. Quantum calculations showed that the solvation of NH₃ directly bonded to HNCO by at least three NH₃ molecules plays a major role in the NH₄⁺OCN⁻ formation process and confirmed the spontaneous character of this reaction. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

HNCO has been detected in the interstellar medium, in gas phase [1–3] but never in the cold (10/ 100 K) interstellar dust grains. Space-based observations by the infrared space observatory (ISO) have revealed the presence of many species in these grains as H_2O , CO, CO₂, CH₃OH and NH₃ [4].

Laboratory studies, relative to the UV irradiation of CO/NH₃ and CO/NH₃/H₂O mixtures [5] at 10 K, have shown that $NH_4^+OCN^-$ could be formed in the grains. The vibrational band assigned to the vOCN⁻ mode located about 2165

¹ Also corresponding author.

cm⁻¹ is in excellent agreement with the one, known as 'XCN' band, observed on ISO spectra and located at 4.62 μ m [6,7]. This assignment is supported by isotopic labeling experiments [8,9]. The NH⁴₄OCN⁻ formation can be explained from an acid–base reaction occurring between NH₃ and HNCO formed during the CO/NH₃ UV irradiation [9–11]. The reactions proposed by Grim et al. [12] are as follows:

 $NH_3 + h\nu \rightarrow NH_3^* \rightarrow NH_2 + H$

 $NH_2 + CO \rightarrow H + HNCO$

 $HNCO + NH_3 \rightarrow NH_4^+ + OCN^-$

Here, using the tools of FTIR spectroscopy and quantum calculation, we focus on the conditions of $NH_4^+OCN^-$ formation and the ionization pro-

0009-2614/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0009-2614(02)01919-X

^{*} Corresonding author. Fax: +491288605.

E-mail addresses: sebastien.raunier@piimsdm.univ-mrs.fr (S. Raunier), thierry@piimsdm.univ-mrs.fr (T. Chiavassa).

cess when HNCO is co-deposited with NH_3 (1/10 mixture) or adsorbed on NH_3 ice film.

2. Experimental

Pure HNCO is synthesized from the thermal decomposition of cyanuric acid (Aldrich Chemical, 98%) at 650 °C, under a primary vacuum [13,14]. HNCO is condensed and conserved in a tube cooled by liquid nitrogen. HNCO is degassed before each experiment. Ammonia is supplied by Air Liquide (N36, $H_2O \ge 200$ ppmv).

To study the reactivity of HNCO into the NH₃ solid, the sample HNCO/NH₃ (1/10) was deposited at a rate of 2×10^{-2} mol/min from two separate inlets onto a gold-platted mirror held at a constant pressure of 10^{-7} mbar at 10 K. The concentration was estimated from standard manometric techniques. Previously, and under the same conditions, we undertook a study of pure HNCO and pure NH₃ spectra.

The thermal activation of the samples was achieved through gradual warming up of the mirror from 10 to 180 K, and using a heating rate of 1 K/min.

Infrared spectra were recorded with a FTIR Spectrometer (Nicolet series II Magna system 750) in the range 4000–500 cm⁻¹, with a resolution of 0.5 cm⁻¹ and 100 scans.

3. Experimental results

Regarding NH₃ [15], the infrared spectrum of solid HNCO at low temperature (10–145 K) has already been reported [10]. The solid NH₃ infrared spectrum (Fig. 1a) can be characterized by four fundamental modes noted v_1 , v_2 , v_3 and v_4 , whose frequencies are 3210, 1075, 3375 and 1625 cm⁻¹ respectively. The HNCO infrared spectrum (Fig. 1b) displays six vibrational modes noted v_1-v_6 and the frequencies are listed in Table 1 with their corresponding assignments. The HNCO IR spectrum is characterized by an intense vibrational band located at 2252 cm⁻¹ and a broad feature split into two bands at 3200–3365 cm⁻¹, which are relative to the v_{as} NCO and vNH stretching modes.

Fig. 1. Co-deposition of HNCO and NH_3 in a ratio 1/10 at 10 K: (a) NH_3 10 K; (b) HNCO 10 K; (c) $HNCO/NH_3$ 10 K; (d) 30 K; (e) 120 K; (f) 160 K.

When HNCO and NH₃ are co-deposited at 10 K. The HNCO IR spectrum shows three bands, which are slightly shifted, compared with the values observed for the solid HNCO or HNCO in an H₂O environment (Table 1). The most striking feature is the $NH_4^+OCN^-$ spontaneous formation due to an acid-base reaction in the bulk between HNCO and NH₃ (Fig. 1c). The absorption bands relative to NH⁺₄OCN⁻ species are reported in Table 2 with their assignments. OCN⁻ is characterized by an intense band at 2151 cm⁻¹ which is well correlated with and two weaker bands at 1212 and 630 cm⁻¹, which are, respectively, relative to the asymmetric stretching and symmetric bending modes [16]. The band at 2151 cm^{-1} cannot be due to the CO formation because this latter can be characterized in NH₃ environment by a band at 2145 cm⁻¹. Moreover, Co is expected to sublimate near of 40 K whereas the 2151 cm⁻¹ band is not reduced in intensity before the temperature of 200 K reached. The frequency (2151 cm^{-1}) of the OCN⁻ asymmetric stretching mode is different from that observed in a H₂O environment (2170 cm^{-1}) [17]. NH_4^+ can be characterized by a weak band at 1495 cm⁻¹ assigned to NH bend and by a broad and intense band in the region near 3000 cm⁻¹, which is the superposition of bonded NH stretch and combination modes [18]. As the sample is heated above 30 K (Fig. 1d), due to a possible

Modes	Assignments	HNCO solid at 10 K	HNCO in H ₂ O solid at 10 K [28]	HNCO in NH ₃ solid at 10 K
v ₁ ^a	NH stretch	3365-3245	_	3218
<i>v</i> ₂	NCO asymmetric stretch	2252	2242	2259
v3 ^b	NCO symmetric stretch	1322–1252	1321–1261	1313–1254
v_4	HNC bend	862	_	_
<i>v</i> ₅	NCO in plane bend	597	_	_
v ₆	NCO out of plane bend	657	_	_

Table 1 Experimental frequencies (cm^{-1}) of HNCO solid, in H_2O and in NH_3 environments at 10 K

^a Two components are observed for this mode. Such a splitting is due to hydrogen bond interaction.

^b Fermi resonance of v_3 and $2v_6$.

Experimental frequencies (cm⁻¹) of NH₄⁺OCN⁻ at 10 K in NH₃ environment and NH₄⁺OCN⁻ solid at 160 K

		Assignments	$\rm NH_4^+ \rm OCN^-$ in solid $\rm NH_3$ at 10 K	$\rm NH_4^+ OCN^-$ solid at 160 K
	$v_1 + v_5$	Combination mode	3225	3200
	v ₃	NH stretch	-	3170
NH_4^+	$v_2 + v_4$	Combination mode	3030	3034
	$2v_4$	First overtone of NH bend	2800	2853
	$v_2 + v_6$	Combination mode	2080	2080
	v_2	NH bend	1630	
	v_4	NH bend	1495	1477–1441 ^a
	v ₃	OCN asymmetric stretch	2151	2165
OCN	$2v_2$	First overtone of OCN bend	1300	1335–1317ª
	v_1	OCN symmetric stretch	1212	1244–1227 ^a
	v ₂	OCN bend	630	645

^a Splitting probably due to a crystallization effect.

excessive NH₃ diffusion in the mixture, the reaction continues up to 120 K with HNCO, which has not yet reacted in the solid (Fig. 1e). After NH₃ sublimation at 125 K, we observe only NH₄⁺OCN⁻ which displays a vibrational spectrum (Table 2, Fig. 1f) different from the one previously recorded at 10 K. This change shows that NH₃ presence (T < 120 K) significantly disturbs the NH₄⁺OCN⁻ environment, which in its crystalline form displays NH₄⁺ cation surrounded by eight NCO⁻ anion [19]. The frequency of the asymmetric OCN⁻ stretching mode is 2163 cm⁻¹ at 160 K. This value is consistent with the experimental data obtained from UV irradiation of CO/NH₃ (1/1) ice and heated up to 100 K [8].

We shall now compare these results with those obtained from HNCO adsorbed on NH_3 solid. The NH_3 film prepared at 10 K is an amorphous film [20]. The v_2 and v_3 bands are broad and not

split into two components as in the metastable (77 K) or cubic (150 K) phases [20] (Fig. 2b). Moreover, the lattice band at 530 cm⁻¹ expected for the metastable or cubic phase is not present. X-ray study of solid ammonia at -102 °C shows that the lone electron pair of NH₃ is used and that each NH₃ molecule is involved in six hydrogen bonds [21]. When HNCO is adsorbed on NH₃ ice (Fig. 2a), no reaction occurs at 10 K. A warming-up the sample to a temperature circa 70 K induces a solid NH₃ transformation, probably from amorphous to a metastable phase. Thus, a splitting into two components of the v_2 and v_3 modes and, at 530 cm⁻¹, emergence of a lattice band not observed in the amorphous film, are now observed for solid NH₃. At 90 K (Fig. 2c), however, a new weak band is observed at 2163 cm⁻¹, which is assigned to the $v_{as}OCN^{-}$ stretching mode. After sublimation of NH₃ at 125 K, the IR spectrum shows (Fig. 2d)

Table 2

Fig. 2. Adsorbtion of HNCO on NH_3 surface: (a) 10 K; (b) 70 K; (c) 90 K; (d) 130 K.

similar features to those observed for $NH_4^+OCN^$ in the co-deposition experiment (Fig. 1f). The small amount of $NH_4^+OCN^-$ detected can be explained because it is only formed at the solid interface HNCO/NH₃.

Since no reaction occurs at 10 K when HNCO is adsorbed on NH_3 ice film but only when HNCO is co-deposited with NH_3 , we suggest that $NH_4^+OCN^-$ is produced by solvation-induced dissociative ionization process. In order to confirm this hypothesis, we performed calculations on HNCO ionization in direct interaction with NH_3 molecules.

4. Computational section

To explain the formation of $NH_4^+OCN^-$, we investigated the interaction between HNCO and the reactive NH_3 , and then the solvation of HNCO by one, two and three NH_3 molecules. These systems are noted HNCO: $(NH_3)(NH_3)_n$ (n = 0-3) and were optimized at B3LYP/6-31G** basis set level of theory [22]. The quantum calculations were carried out using GAUSSIAN 98 [23]. The interaction energy of the different system, ΔE , was calculated using the following equation:

$$\Delta E(n) = E \left[\text{HNCO}(\text{NH}_3)_{n+1} \right] - E[\text{HNCO}] - E \left[(\text{NH}_3)_{n+1} \right]$$
(1)

Each term is evaluated using the entire orbital set as usual in the Boy's counterpoise method (BSSE correction) [24].

With one NH₃ only (n = 0), HNCO is bonded to NH₃. The system features a strong hydrogen bond (H-bond) ($r_2 = 1.825$ Å in Fig. 3a), between the hydrogen of HNCO and the nitrogen of NH₃, forming an angle (N–H...N) of 177.2°. The stabilizing energy of the system is -46 kJ/mol. In this configuration, HNCO displays a proton donor character and the covalent bond length NH (r_1) of HNCO (H–NCO) is 1.040 Å (1.008 Å for isolated HNCO).

(1) n = 1. The optimized structure (Fig. 3b) presents three H-bonds, forming a quasi-planar cycle. In this configuration, HNCO is in the time proton donor to the first NH₃ and proton acceptor by its lone electron pair with the second NH₃. The H-bond (r_2) length is now 1.721 A, indicating a strong reinforcement. Simultaneously, r_1 increases to 1.060 Å. The H-bond (r_3) , between the nitrogen of HNCO and hydrogen of NH₃ is 2.405 A, which denotes a rather weak H-bond. The bond length (r_4) , between the two NH₃, is 2.076 Å. The stabilizing energy is now -67 kJ/mol, the gain between the systems (3a) and (3b) is about -21 kJ/mol. Adding extra solvent molecules reinforces r_2 (1.825–1.721 A). One consequence is to weaken the involved covalent bond r_1 (1.040–1.060 Å) as already frequently reported [25,26].

(2) n = 2. The new additional NH₃ presents a H-bond ($r_5 = 2.094$ Å in Fig. 3c) with the HNCO:(NH₃)(NH₃) system. The other H-bonds are altered, (r_3) decreased to 2.366 Å and (r_4) increased to 2.169 Å. The position of the third NH₃ is out of plane and does not involve any interaction with HNCO. The stabilizing energy increases to -89 kJ/mol. The new NH₃ contributes, by hyperconjugation, to weakening r_1 down to 1.088 Å and reinforcing r_2 to 1.617 Å, without interacting with HNCO.

(3) n = 3. After optimization, the HNCO:NH₃ (NH₃)₃ system spontaneously developed into OCN⁻:(NH₄⁺)(NH₃)₃ (Fig. 3d). There was formation of NH₄⁺ and OCN⁻ ions by proton transfer from HNCO to NH₃ ($r_1 = 1.715$ Å). The different NH bonds of NH₄⁺ are bonded directly to three NH₃ and OCN⁻ molecules via hydrogen bonding.

Fig. 3. Optimized structures of HNCO: $(NH_3)(NH_3)_n$ for n = 0-3, with interaction energies $\Delta E(BSSE)$ given in kJ/mol. r_1 and r_2 are distances between N(1) and H(2), and between H(2) and N(3) given in Å (values in parentheses).

The isocyanate displays three H-bonds, r_1 , r_3 and r_7 , with 2.137, 1.715 and 2.046 Å, respectively. The lengths of the different H-bonds, r_4 , r_5 and r_6 , between the NH₃ and NH₄⁺ are 1.952, 1.892 and 1.945 Å.

The stabilization effect of the system increases with the number of NH₃. The gain between every addition of NH₃ is about 20 kJ/mol from n = 0 to 2 [27]. When n = 2, the total gain in energy is roughly equal to a covalent bond energy. As a consequence, for n = 3, the H–NCO bond breaking, is completely offset by the solvation contribution and the resulting system is energetically stable. These results are consistent with the calculations of Daigoku et al. [27] and Wang et al. [28]. Both found a stabilization effect of NH₄⁺ with full solvation of NH bonds in a symmetry T_d for NH₄⁺(NH₃)₄. The bond lengths of NH in NH₄⁺

decreased while the H-bond distances NH...N with the NH₃ solvents increased, continuously from NH₄⁺(NH₃) to NH₄⁺(NH₃)₄ [28]. In this case, the H-bond distances with all NH₃ are 1.920 Å. This is good agreement with our values 1.952, 1.892 and 1.945 Å for the system (n = 3), where the symmetry is broken.

Quantum calculations confirm the spontaneous character of the reaction between HNCO and NH₃ at 10 K. Due to the proton donor character of the HNCO molecule, we confirm that the ionization process occurs if one NH₃ molecule is in interaction with HNCO via its lone electron pair, and if this NH₃ is solvated enough. Three NH₃ molecules are at least required to induce the proton transfer.

5. Discussion and conclusion

We showed that when HNCO is co-deposited with the NH_3 (1/10) mixture, an acid-base reaction occurs between HNCO and NH₃ as soon as 10 K to produce $NH_4^+OCN^-$. The more typical vibrational bands of NH₄⁺OCN⁻, which serve in probing its identification, at 2151 and 1495 cm⁻¹ are in excellent agreement with the values reported for NH⁺₄OCN⁻ induced during the photolysis of CO/ NH₃ ices [29]. However, the behavior of HNCO is different when it is co-deposited with NH₃ and when it is adsorbed on NH₃ amorphous films at 10 K. In the latter case, the system is not reactive. Nevertheless, upon sample warm-up at a temperature of 90 K, NH⁺₄OCN⁻ can be formed but in a weak proportion because it is only formed at the interface of the two solid phases. The $NH_4^+OCN^$ formation can be explained from a dynamical reconstruction of the NH₃ film. The changes observed on the NH₃ infrared spectrum at 70 K suggest a transformation from an amorphous to metastable phase [20]. This transformation is favorable to solvation of HNCO by NH₃ molecules and it follows the emergence of a reaction as confirmed by the quantum calculations.

Some other observations providing useful information on the identification of the species in the interstellar medium can be obtained from the position of the vibrational bands of OCN^- , NH_4^+ and HNCO. The more typical OCN⁻ (2165 cm⁻¹) and NH_4^+ (1495 cm⁻¹) IR absorptions are shifted versus those recorded by the ISO spectra of protostellar objects.

Thus, the two bands assigned to $NH_4^+OCN^-$ in the ISO spectra are generally reported at 2165 cm^{-1} (vOCN⁻) and 1460 cm⁻¹ (δNH_4^+) [17]. We think that these differences could be explained from the environment of NH⁺₄OCN⁻. In this study we did not consider H₂O, which is the major constituent of the interstellar grains. NH₃/H₂O ice could modify the frequency of the ions, we also consider studying the behavior of HNCO co-deposited with such a mixture. For example, the vOCN⁻ frequency changes from 2151 cm⁻¹ in an NH₃ environment to 2170 cm⁻¹ in an H₂O environment. The solid NH₄⁺OCN⁻ frequencies at T = 160 K are also very much altered modified compared to NH₄⁺OCN⁻ frequencies in an NH₃ environment (T < 125 K).

In the same way, the vNCO frequency of HNCO changes significantly according to its environment: from 2259 cm⁻¹ in the HNCO/NH₃ system to 2242 cm⁻¹ in the HNCO/H₂O [17] system compared with the 2252 cm⁻¹ expected for HNCO solid at 10 K. We believe that the non-detection of HNCO in the interstellar grain, nevertheless produced in laboratory during the photolysis of CO/NH₃ or CO/NH₃/H₂O mixtures [5], can be due both to its great reactivity to NH₃ and to its fast photode-composition [30].

Further study concerning HNCO adsorbed on solid NH₃ and HNCO in NH₃/H₂O ices must be envisaged.

References

- J. Crovisier, D. Bockelée-Morvan, Space Sci. Rev. 90 (1999) 19.
- [2] E.F. van Dishoeck, G.A. Blake, Annu. Rev. Astron. Astrophys. 36 (1998) 317.
- [3] B.E. Turner, R. Terzieva, E. Herbst, Astrophys. J. 518 (1999) 699.
- [4] S.B. Charnley, P. Ehrenfreund, Y.-J. Kuan, Spectrochim. Acta Part A 57 (2001) 685.
- [5] D.C.B. Whittet, W.A. Schutte, A.G.G.M. Tielens, A.C.A. Boogert, T. de-Graauw, P. Ehrenfreund, P.A. Gerakines, F.P. Helmich, T. Prusti, E.F. van-Dishoeck, Astron. Astrophys. 315 (1996) L357.

- [6] R.L. Hudson, M.H. Moore, P.A. Gerakines, Astrophys. J. 550 (2001) 1140.
- [7] B.T. Soifer, R.C. Puetter, R.W. Russel, S.P. Willner, P.M. Harvey, F.C. Gillet, Astrophys. J. 232 (1979) L53.
- [8] M.P. Bernstein, S.A. Sandford, L.J. Allamandolla, Astrophys. J. 542 (2000) 894.
- [9] J.H. Novozamsky, W.A. Schutte, J.V. Keane, Astron. Astrophys. 379 (2001) 588.
- [10] M.S. Lowenthal, R.K. Khanna, M.H. Moore, Spectrochim. Acta Part A 58 (2002) 73.
- [11] L. d'Hendecourt, E. Dartois, Spectrochim. Acta Part A 57 (2001) 669.
- [12] R.J.A. Grim, J.M. Greenberg, M.S. de Groot, F. Baas, W.A. Schutte, B. Schmitt, Astron. Astrophys. 78 (1989) 161.
- [13] G. Herzberg, C. Reid, Discuss. Faraday Soc. 9 (1950) 92.
- [14] Y.L. Sheludyakov, F.Z. Shubareva, V.A. Golodov, Russ. J. Appl. Chem. 67 (1994) 1081.
- [15] J.G. Pipes, J.A. Roux, A.M. Smith, AIAA J. 16 (1978) 984.
- [16] W.A. Schutte, J.M. Greenberg, Astron. Astrophys. 317 (1997) L43.
- [17] S. Raunier, T. Chiavassa, F. Marinelli, A. Allouche, J.-P. Aycard, submitted.

- [18] E.L. Wagner, D.F. Hornig, J. Chem. Phys. 18 (1950) 296.
- [19] J.D. Dunitz, K.D.M. Harris, R.L. Johnston, B.M. Kariuki, E.J. MacLean, K. Psallidas, W.B. Schweizer, R.R. Tykwinski, J. Am. Chem. Soc. 120 (1998) 13274.
- [20] P.A. Staats, H.W. Morgan, J. Chem. Phys. 31 (1959) 553.
- [21] I. Olovsson, D.H. Templeton, Acta Cryst. 12 (1959) 827.
- [22] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
- [23] M.J. Frisch et al., GAUSSIAN 98, Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998.
- [24] S. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
- [25] M. Masella, J.-P. Flament, J. Chem. Phys. 110 (1999) 7245.
- [26] S. Scheiner, Hydrogen Bonding: A Theoretical Perspective, Oxford University Press, Oxford, 1997.
- [27] K. Daigoku, N. Miura, K. Hashimoto, Chem. Phys. Lett. 346 (2001) 81–88.
- [28] B.-C. Wang, J.-C. Chang, J.-C. Jiang, S.-H. Lin, Chem. Phys. 276 (2002) 93.
- [29] K. Demik, E. Dartois, L. d'Hendecourt, M. Jourdain de Muizon, A.M. Heras, M. Breitfellner, Astron. Astrophys. 339 (1998) 553.
- [30] M. Petterson, L. Khriachtchev, S. Jolkkonen, M. Räsänen, J. Phys. Chem. A 103 (1999) 9154.