

Tetrahedron Letters, Vol. 36, No. 44, pp. 8071-8074, 1995 Elsevier Science Ltd Printed in Great Britain 0040-4039/95 \$9.50+0.00

0040-4039(95)01711-9

Stereocontrolled Intramolecular Michael-Aldol Reaction Mediated with Bu₂BOTf and (TMS)₂NH

Masataka Ihara, Takahiko Taniguchi, Masami Yamada, Yuji Tokunaga and Keiichiro Fukumoto*

Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-77, Japan

Abstract: Treatment of keto-esters 1-5 with Bu₂BOTf and (TMS)₂NH caused a tandem Michael-aldol reaction to give polycyclic cyclobutanes 6-10 with high stereoselection. It was proved that the reaction was accelerated by the addition of Bu₄NI.

We have recently developed a new methodology for the construction of polycyclic ring systems fused to cyclobutane by a tandem intramolecular Michael-aldol reaction. The cyclization reaction was carried out under two complementary conditions: TBDMSOTf-Et₃N¹ and TMSI-(TMS)₂NH.² It must be crucial for the tandem reaction to trap the aldol intermediate as a stable form. Keeping this in mind, we further examined various reaction conditions consisting of both Lewis acid and base. In this letter, we report the third method using a novel combination with Bu₂BOTf³-(TMS)₂NH to achieve a highly stereoselective assembly of polycyclic cyclobutanes.

Results of the intramolecular Michael-aldol reaction of keto α,β -unsaturated esters 1–5 are summarized in Table 1. When 1 was treated for 18 h at rt with Bu₂BOTf-(TMS)₂NH in dichloroethane, 6 was obtained in 42% yield (62% yield based on the recovered substrate) as a single stereoisomer (entry 1). The reaction was accelerated with Bu₄NI. The yield of 6 increased to 64% by addition of Bu₄NI and, after the reaction, the starting material was almost consumed (entry 2). Reaction of 1 with TMSI-(TMS)₂NH gave a 2 : 1 mixture of bicyclic compound 6 and its stereoisomer (entry 3).² The bicyclo[4.2.0]octane 7 was synthesized in 15% (33% yield based on the recovered substrate) from 2⁴ with Bu₂BOTf-(TMS)₂NH (entry 4) and in 54% yield with Bu₂BOTf-(TMS)₂NH-Bu₄NI (entry 5). Treatment of 2 with TMSI-(TMS)₂NH provided 7 in only 25% yield (entry 6). By the same treatments carried out under three different conditions, 3⁵ was converted into the corresponding bicyclic compound 8 in 21% yield (33% yield based on the recovered

entry	substrate	conditions ^a	product	yield (%) ^b
1		A		42 (62)
2	CO ₂ Me	В	H CO ₂ Me	64
3	1	С	6	91 ^{c, d}
4	$ \land \downarrow $	A ^e	H	15 (33)
5	CO ₂ Me	B ^e	H, COoMe	54
6	2	С	7	25
7		A	NOE	21 (33)
8	CO ₂ Me	В		17
9	3	С	8	9
10	MeO ₂ C O	A		50
11		В	Hundred Com	53
12	4	С	9	70 ^c
13		۵	07549	31 (78)
13	\bigwedge	D	H H H	AC
14	O CO ₂ Me	Б		40
15	3	С	10	57 °

Table 1 Intramolecular Michael-Aldol Reaction of Keto-Esters

a Conditions A = Bu_2BOTf (3.0 eq), (TMS)₂NH (4.0 eq), ClCH₂CH₂Cl for 18 h at rt; conditions B = Bu_2BOTf (3.0 eq), (TMS)₂NH (3.5 eq), Bu₄NI (3.5 eq), CHCl₂CH₂Cl for 18 h at rt; conditions C = TMSI (1.2 eq), (TMS)₂NH (1.5 eq), ClCH₂Cl for 18 h at 0 °C - rt.

b Yield (in parenthesis) based on the consumed starting material.

c Ref. 2a.

d A 2: 1 diastereoisomeric mixture.

e Reaction was carried out for 2 h.

substrate) (entry 7), 17% yield (entry 8) and 9% yield (entry 9). Stereostructures of 7 and 8, which were obtained as a single stereoisomer, respectively, were determined by NOE experiments.⁶

Tricyclic compound 9^{2a} and 10^{2a} were obtained in medium yields from 4 and 5, respectively (entries 10-15).

The active species in the reaction using Bu_2BOTf and $(TMS)_2NH$ would be 11 as Simchen and coworkers⁷ considered a similar complex formation from TMSOTf and Et₃N. Although the exact reason is obscure, a more hindered hydrogen is selectively abstracted to afford a thermodynamically stable enol ether 12 (Scheme 1). In fact, formation of the silyl enol ether was detected on TLC during the above reactions.⁸

Scheme 1

Usefulness of the above system was further demonstrated in the intramolecular Michael reaction. Namely, treatment of 13 with Bu₂BOTf and (TMS)₂NH in dichloroethane produced 14^{2b} as a 1.3 : 1 diastereoisomeric mixture in 70% yield. No four membered compound was obtained by the reaction.

Scheme 2

Acknowledgment: We thank Mr. K. Sasaki of Instrumental Analysis Center for Chemistry, Faculty of Science, Tohoku University for NOE measurements.

References and Notes

1. Ihara, M.; Ohnishi, M.; Takano, M.; Makita, K.; Taniguchi, N.; Fukumoto, K. J. Am. Chem. Soc. 1992, 114, 4408-4410.

- (a) Ihara, M.; Taniguchi, T.; Makita, K.; Takano, M.; Ohnishi, M.; Taniguchi, N.; Fukumoto, K.; Kabuto, C. J. Am. Chem. Soc. 1993, 115, 8107-8115. (b) Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. J. Org. Chem. 1994, 59, 8092-8100.
- 3. Inoue, T.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1980, 53, 174-178.
- 4. The substrate 2 was prepared as follows.

5. The substrate 3 was prepared as follows.

6. MMX energies calculated using PCMODEL⁹ indicated that the streroisomes A were most stable one among four possible *cis*-fused bicyclic isomers A-D.

8. Productions of silyl enol ethers 15 and 16 were established by ¹H NMR spectroscopy after their isolation using preparative TLC.

9. PCMODEL (Version 4.0), Serena Software, P. O. Box 3076, Bloomington, IN.

(Received in Japan 3 August 1995; revised 25 August 1995; accepted 8 September 1995)