STEREOCHIMIE ET FACTEURS ORBITALAIRES—I

REACTION DE LA t-BUTYL-4 CYCLOHEXANONE AVEC DIVERS ORGANOMETALLIQUES ALLYLIQUES

M. GAUDEMAR

Université Pierre et Marie Curie, Laboratoire de Synthèse Organométallique, 11, Quai Saint-Bernard, Bât. F, 75230 Paris Cédex 05, France

(Received in France 5 December 1975; Received in the UK for publication 27 January 1976)

Résumé—L'attaque axiale de la t-butyl-4 cyclohexanone par CH₂=CH-CH₂M (avec M = ZnBr, Al_{2/3}Br, MgBr, K, Na ou Li) est de plus en plus importante lorsqu'on passe du zinc aux métaux alcalins. Le caractère dur ou mou du nucléophile est un facteur fondamental de la stéréochimie de cette réaction.

La stéréochimie de l'addition des réactifs organométalliques à la t-butyl-4 cyclohexanone a fait l'objet de nombreux travaux. Dans une revue récente, il est montré que l'on ne peut pas rationaliser complètement les résultats uniquement à l'aide des concepts classiques: empêchement stérique² et gène torsionnelle. En fin d'article, les auteurs laissent en-

METHODES UTILISEES

Préparation des organométalliques

Ces préparations sont classiques; néanmoins, en ce qui concerne les dérivés alcalins, nous avons mis au point une méthode nouvelle basée sur la coupure de l'oxyde de phényle et d'allyle par le naphtalène-lithium (sodium ou potassium):

$$2\left[\bigcap_{-20}^{\bullet}\right]^{\Theta} \quad M^{\odot} + C_6H_5 - O - CH_2 - CH = CH_2 - \frac{THF}{-20} \rightarrow M - CH_2 - CH = CH_2 + C_6H_5OM + 2\left[\bigcap_{-20}^{\bullet}\right]^{\Theta}$$

trevoir le rôle que peuvent jouer les facteurs orbitalaires dans l'entrée axiale ou équatoriale du nucléophile.

Il a été effectivement montré que des nucléophiles durs sont capables, si les contraintes stériques ne sont pas trop importantes, d'entrer préférentiellement en axial; la réaction est alors sous contrôle de charge et l'attaque est orientée par la dissymétrie de la Lumo. En revanche, les nucléophiles mous réagissent sous contrôle orbitalaire, dans un état de transition où les contraintes stériques sont plus importantes, donc préférentiellement du côté équatorial.

Dans ce travail, nous avons systématiquement examiné la réaction des organométalliques allyliques CH2=CH- CH_2M (M = ZnBr, Al_{2/3}Br, MgBr, Li, Na ou K) avec la t-butyl-4 cyclohexanone; le choix du groupe allyle a été détérminé par le souci de rendre les contraintes stériques minimales et indépendantes du métal. Il a été, en effet, prouvé⁶ que le bromure d'allylmagnésium réagissait avec les époxydes suivant un mécanisme SE2, c'est-à-dire que le métal reste toujours éloigné des carbones qui se lient; ce résultat paraît pouvoir être généralisé, car nous avons refait les mêmes expériences à partir de l'allyl-lithium avec un résultat stérique identique.7 Felkin et al.89 ont également montré que les bromures d'allyl- ou de crotyl-magnésium s'additionnaient allx dérivés carbonylés suivant ce même mécanisme SE2, qu'il est donc raisonnable d'admettre:

$$M - \widehat{CH}_2 - CH = \widehat{CH}_2$$
 $C = \widehat{C}$

Les contraintes stériques étant donc faibles, on doit s'attendre à une forte entrée axiale des nucléophiles durs.

M = Li, Na ou K.

Ce type de coupure avait déjà été utilisée par Angelo pour atteindre d'autres dérivés sodés.¹⁰

Corrélation et identification des isomères Il se forme les deux alcools A et E:

alcool A résultant d'une attaque équatoriale

axiale

On n'observe, en aucun cas, les alcools de réduction simple 11 de la cétone, caractérisés par les signaux de RMN du proton CHOH vers 3-4 × 10⁻⁶.

Les isomères A et E ont été déjà identifiés par CPV;¹² il a été montré, par ailleurs, sur des alcools saturés voisins de ceux étudiés ici, que dans le DMSO le proton du groupe OH axial résonnait à champ plus fort que son analogue équatorial.¹³

Pour notre part, nous avons préféré réaliser une

1690 M. GAUDEMAR

corrélation entre nos alcools et les β -hydroxy-acides:

dont les spectres de RMN sont connus. ¹⁴ Cette corrélation a été faite en oxydant divers mélanges d'alcools par la méthode de Harnden. ¹⁵

Les spectres de RMN, enregistrés à partir de mélanges A + E, dans le benzène, montrent les signaux H_c et t-Bu bien différenciés pour chaque isomère: $\delta H_C(A) < \delta H_C(E)$ et δt -Bu(A) $> \delta t$ -Bu(E).

Ce déplacement chimique du groupe t-Bu, au sein du benzène, déplacement plus important pour l'alcool axial que pour son isomère équatorial, paraît être un phénomène général que nous avons observé sur de nombreux exemples du type:

$$\rightarrow$$

Y = H, CH_2R , $CH_2-C = C-H$, CH_2-COOR , $CH_2-CON(R)_2$, $CH_2-C = N$ ou CH_2-COOH^{\dagger}

Essais d'équilibration

L'exploitation de nos résultats ne peut avoir de sens que dans la mesure où nous isolons les produits cinétiques.

Un contrôle thermodynamique de la réaction était très peu probable, compte tenu de nos conditions opératoires (5° ou -20° pendant 1 h), et de ce que l'on connait des condensations de ce type. 16

Nous avons, néanmoins, procédé à quelques essais qui

ont permis d'éliminer l'hypothèse d'une équilibration au stade alcoolate, dans les conditions indiquées au Tableau 1 (voir Partie Expérimentale). Il est, par ailleurs, significatif de constater que le pourcentage d'entrée axiale de l'allyl-sodium ne change pas lorsque la température passe de -20 à -70° .

Nous ne rejetons pas, toutefois, l'hypothèse d'une équilibration thermodynamique, mais dans des conditions beaucoup plus dures que celles indiquées dans le Tableau 1: si après condensation en présence de DMSO, et avant hydrolyse, nous chauffons le milieu 96 h à l'ébullition, nous recueillons, toutes opérations terminées, et avec un rendement de 77%, un mélange d'alcools renfermant 27% de l'isomère E. C'est plus que si nous n'avions pas chauffé, mais la différence n'est pas assez importante pour que nous puissions en tirer des conclusions définitives.

RESULTATS

Ils sont groupés dans le Tableau 1.

Au vu de ces résultats, il était tentant d'essayer l'allyl-cuivre (réactif mou) pour lequel on pouvait espérer une très faible entrée axiale. Malheureusement, ce réactif nous a conduit à des résultats incohérents, semblant dépendre de la méthode de préparation; nous travaillons dans le but d'éclaircir ce point.

Rappelons que le comportement anormal de l'allylcuivre a déjà été rapporté.¹⁷ C'est d'autant plus regrettable que le mélange, en parties égales, de méthyllithium/diméthyl-cuprate, opposé à la t-butyl-4 cyclohexanone, donne presque exclusivement l'alcool axial.¹⁸

Interprétation

Il a été suggéré¹⁹ que la dureté d'un organométallique variait dans le même sens que celle de son cation: Li⁺, Na⁺ et K⁺, durs; Al' et Mg⁺, moyens; Zn⁺, mou. Cette hypothèse est en parfait accord avec nos résultats: plus le groupe allyle est associé à un cation dur, plus il rentre en axial.

Il a été par ailleurs rapporté²⁰ que la solvatation croissante du métal durcissait l'anion. C'est bien ce que nous observons: le bromure d'allyl-zinc, solvaté par le DMSO, attaque plus en axial que le même réactif dans le THF. La différence est beaucoup moins significative dans le cas du bromure d'allyl-magnésium au sein de l'éther ou

Tableau 1

′ \	_/	(2) H ₁ O	CH₂-CH=CH	
М	Solvant	Température réact. °C	Rdt %	%E dans le mélange
ZnBr	THF	5	79	15
ZnBr	THF/DMSO*	5	88	23
Al _{2/3} Br	THF	5	83	32
MgBr	éther	0	ъ	51
MgBr	THF	5	33	55
Li	THF°	-20	67	65
Na Na	THF°	-20	68	65
Na	THF°	-70	62	65
K	THF°	-20	30	63

Rapport cétone/bromure (ou (éther-oxyde) = 0.75. Durée de condensation: 1 h. Les rendements sont calculés par rapport à le cétone. Les dosages sur les signaux H_c et t-Bu montrent des différences au plus égales à 3%. "Mélange 1/1. bRésultat dû à Felkin et al.;" le rendement n'est pas indiqué. cAccompagné de naphtalène et de C₆H₅OM.

[†]En présence d'un peu de HCOOH pour assurer la solubilisation. tion.

du THF; cette différence peut être due aux erreurs d'expériences, car on admet généralement une précision de l'ordre de 5% dans les dosages par RMN.

Remarquons, enfin, que la réaction étudiée ne permet pas de mettre en évidence une différence notable de dureté entre les cations alcalins, différence effectivement observée dans le cas des réductions-1,4.²¹

PARTIE EXPERIMENTALE

Préparation des organométalliques

Toutes les expériences ont été faites à partir de 0.1 mole de CH₂=CH-CH₂Br ou de CH₂=CH-CH₂-O-C₆H₅. Bromure d'allylzinc ou -aluminium suivant Réf. 22. Bromure d'allyl-magnésium: suivant Réf. 8; on ajoute ensuite un volume de THF, et l'éther est chassé par distillation. Allyl-lithium (-sodium ou -potassium): le naphtalène-lithium (-sodium ou -potassium) est préparé suivant la Réf. 23 à partir de 0.2 mole de naphtalène technique, 0.2 at. g de métal de 200 cm³ de THF, à 25°. Après 4 h d'agitation, on refroidit le milieu à -20° et, en maintenant cette température, on ajoute en h environ 0.1 mole de C₆H₅-O-CH₂-CH=CH₂ (Eb_{13 mun} = 77-79°; préparé à partir de C₆H₅ONa et CH₂Br-CH=CH₂ dans l'alcool absolu; rdt = 84%). Les organométalliques formés sont rouge sang.

Les conditions des condensations sont indiquées dans le Tableau 1.

Extraction

Synthèse organozincique, magnésienne ou aluminique: la masse réactionnelle est versée dans 100 cm³ d'eau acidulée par 10 cm³ de HCl. Après extraction à l'éther, puis lavage de la phase organique à l'eau distillée, le solvant est chassé et le résidu distillé; la cétone éventuellement restante se sépare sans difficulté. Eb_{<0 1 mmHg} du mélange d'alcools A + E: 78–80°.

Synthèses organo-alcalines: mode opératoire analogue, mais on verse sur de l'eau neutre pour laisser C_0H_3OM dans la phase aqueuse. Le naphtalène se sépare bien sous le bide de la trompe à eau $(Eb_{12 \text{ mm}} = 92-100^\circ)$.

Corrélation

Expérience type: l'oxydation, par la méthode de Harnden, s' d'un mélange d'alcools 18/82 donne, avec un rendement de 56%, un mélange d'acides renfermant 13% de l'isomère à OH axial.

Essais d'équilibration

Un mélange E/A = 15/85 est transformé en alcoolates par un équivalent de EtMgBr dans le THF, à 5°. Après 1 h à 5°, hydrolyse et traitements habituels, le mélange inchangé d'alcools est récupéré avec un rendement de 97%. La condensation organomagnésienne, dans les mêmes conditions de durée et de température, donne E/A = 55/45.

$$(CH_3)_3C$$
 CH_2
 CH_2
 CH_2
 CH_2

Un essai analogue à partir d'un mélange E/A = 65/35, et d'un

équivalent de CH.=CH-CH₂ZnBr dans le THF, permet de récupérer le mélange inchangé, avec un rendement de 92%. La condensation organozincique donne E/A = 15/85.

RMN: 200 mg de mélange e/a = 60/40; 1 cm³ de benzène; réf. int., TMS; δ , 10^{-6} ; J, Hz; appareil Perkin-Elmer R-12. Signaux communs: H₈, 1-1.8; H_d et H_e, 4.8-6.4. Signaux differenciés: Alcool A: H_a, singulet, 0.87; H_e, doublet (détriplé à longue distance), 2.08. Alcool E: H_a, singulet, 0.79; H_c, doublet (détriplé à longue distance), 2.08. J_{HeHd} et J_{HeHe}, mesurée sur des mélanges E/A = 15/85 et E/A = 65/35 sont les mêmes pour les deux isomères: respectivement 7.2 et 1.8. H_f n'est pas visible, sans doute parce que le signal est très aplati. Les spectres des mélanges bruts contenant un peu de cétone de départ montrent le groupe t-Bu de cette cétone vers 0.69 × 10 °; ce singulet est absent sur les spectres des mélanges distillés. Les mélanges bruts ou distillés présentent le même rapport E/A, ce qui exclut la perte éventuelle de l'un des isomères.

Analyses et spectres IR

Ils sont corrects. Les spectres IR montrent, notamment, ν_{OH} forte vers 3375 cm* et $\nu_{C=C}$ vers 1640 cm⁻¹.

BIBLIOGRAPHIE

- ¹E. C. Ashby et J. T. Laemmle, Chem. Rev. 75, 521 (1975).
- ²W. G. Dauben, G. J. Fonken et D. S. Noyce, *J. Am. Chem. Soc.* 78, 2579 (1956).
- ³M. Cherest et H. Felkin, Tetrahedron Letters 2205 (1968).
- ⁴Y. Maroni-Barnaud, M. C. Roux-Schmitt et J. Seyden-Penne, *Ibid.* 3129 (1974).
- ⁵J. Klein, Ibid. 4307 (1973); Tetrahedron 30, 3349 (1974).
- ⁶H. Felkin, C. Frajerman et G. Roussi, Bull. Soc. Chim. Fr. 3704 (1970).
- ⁷R. Arous-Chtara, M. Gaudemar et J. L. Moreau, résultats non publiés.
- *H. Felkin, C. Frajerman et G. Roussi, Ann. Chim. 6, 17 (1971).
- ^oH. Felkin, Y. Gault et G. Roussi, Tetrahedron 26, 3761 (1970).
- ¹⁰B. Angelo, Bull. Soc. Chim. Fr. 1091 (1966).
- ¹¹P. R. Jones, W. J. Kauffman et E. J. Goller, J. Org. Chem. 36, 186 (1971).
- ¹²D. Abenhaim, E. Henry-Basch et P. Freon, Bull. Soc. Chim. Fr. 4043 (1969).
- ¹O. L. Chapman et R. W. King, J. Am. Chem. Soc. 86, 1256 (1964).
 ¹⁴J. Pansard et M. Gaudemar, C.R. 271C, 159 (1970); Bull. Soc. Chim. Fr. 3472 (1973).
- ¹⁵R. Harnden, J. Chem. Soc. C 960 (1969).
- 16P. Miginiac, Bull. Soc. Chim. Fr. 1077 (1970).
- ¹²J. F. Normant, G. Cahiez, M. Bourgain C. Chuit et J. Villieras, *Ibid.* 1656 (1974).
- ¹⁸T. L. MacDonald et W. C. Still, J. Am. Chem. Soc. 97, 5280 (1975).
- ¹⁹O. Eisenstein, J. M. Lefour, C. Minot, Nguyen Trong Anh et G. Soussan, C.R. 274C, 1310 (1972).
- ²⁰R. Corriu et R. Royo, J. Organometal. Chem. 40, 229 (1972).
- ²¹J. Bottin, O. Eisenstein, C. Minot et Nguyen Trong Anh, *Tetrahedron Letters* 3015 (1972).
- ²²M. Gaudemar, Ann. Chem. 1, 161 (1956).
- ²³H. Normant et B. Angelo, Bull. Soc. Chim. Fr. 354 (1960).