ORGANIC

Lactol-Directed Osmylation. Stereodivergent Synthesis of Four C-19,20 Apoptolidin Diols from a Single Allylic Hemiacetal

Youngsoon Kim and Philip L. Fuchs*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

pfuchs@purdue.edu

Received March 28, 2007

A synthetic approach to prepare four Apoptolidin C-19,20 diastereomeric diol derivatives was developed. Two diastereomers were obtained from the (Z)-form, which is converted to the (E)-form, followed by dihydroxylation to deliver two more diastereomers. The (E)-allylic hemiacetal and methoxyacetal showed opposite diastereoselectivity.

Apoptolidin A (**1A**) is a 20-membered macrocyclic lactone that was isolated from *Norcardiopsis* sp. by Seto and coworkers in 1997, and **1A** induced apoptotic cell death in rat gila cells transformed with the E1A oncogene at ng/mL but did not cause cell death in normal gila cells or fibroblasts at μ g/mL.¹ In 2000, Khosla and co-workers correlated its activity with inhibition of mitochondrial F₀F₁-ATPase.² Significantly, **1A** is in the upper 0.1% of agents screened using the NCI's 60 human tumor cell line panel with respect to differential cytotoxicity. The selective biological activity and complex structure have made it a challenging target for the synthetic community.³ Apoptolidin A (**1A**) and D (**1D**) undergo ring expansion from the C-19 to the C-20 hydroxyl group to produce Isoapoptolidin A and D (Figure 1) that are over 10-fold less active than the precursor lactones.^{4,6c}

Figure 1. Ring expansion equilibrium of Apoptolidin A and D.

Furthermore, Wender probed the Apoptolidin structure– activity relationship and biological mode of action and, more recently, isolated three additional Apoptolidins (Apoptolidin B, C, and D).⁵

^{(1) (}a) Kim, J. W.; Adachi, H.; Shin-ya, K.; Hayakawa, Y.; Seto, H. J. Antibiot. **1997**, 50, 628. (b) Hayakawa, Y.; Kim, J. W.; Adachi, H.; Shin-ya, K.; Fujita, K.; Seto, H. J. Am. Chem. Soc. **1998**, 120, 3524.

^{(2) (}a) Salomon, A. R.; Voehringer, D. W.; Herzenberg, L. A.; Khosla, C. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 14766. (b) Salomon, A. R.; Voehringer, D. W.; Herzenberg, L. A.; Khosla, C. *Chem. Biol.* **2001**, *8*, 71. (c) Salomon, A. R.; Zhang, Y.; Seto, H.; Khosla, C. *Org. Lett.* **2001**, *3*, 57.

In order to explore the anticancer activity/selectivity of Apoptolidin analogues, we report preparation of four C-19,20 diols to test the possibility of avoiding the undesirable trans-acylative ring expansion equilibrium which attends the natural isomer.^{5a}

The synthesis⁶ of hemiacetals **5** and **6** begins with 1,2addition of the lithium acetylides prepared by the method of Corey *et al.*⁷ on dibromides **2**⁸ and **3**⁸ to lactone ester **4**.^{8,9} The reaction affords inseparable ~1:1 anomeric hemiacetals **5** and **6** in 75 and 80% yields, with ~15–20% unreacted **4** and proton quenched acetylene being recovered (Scheme 1). Careful control of reaction temperature and reagent stoichiometry is essential to avoid β -elimination of the silyloxy group and/or addition to the methyl ester.

Numerous efforts¹⁰ at semi-hydrogenation of alkyne **5** failed, presumably due to catalyst poisoning by the phenyl sulfide moiety. Therefore, **5** was oxidized¹¹ to sulfone **7**, which is easily reduced to allylic hemiacetal (*Z*)-**8** in 85% yield under a hydrogen balloon using catalytic Pd–BaSO₄ and quinoline.

(4) (a) Wender, P. A.; Gulledge, A. V.; Jankowski, O. D.; Seto, H. *Org. Lett.* **2002**, *4*, 3819. (b) Pennington, J. D.; Williams, H. J.; Salomon, A. R.; Sulikowski, G. A. *Org. Lett.* **2002**, *4*, 3823.

(5) (a) Wender, P. A.; Jankowski, O. D.; Tabet, E. A.; Seto, H. Org. Lett. 2003, 5, 487. (b) Wender, P. A.; Sukopp, M.; Longcore, K. Org. Lett. 2005, 7, 3025. (c) Wender, P. A.; Longcore, K. Org. Lett. 2007, 9, 691.

(6) Alvarez, E.; Perez, R.; Rico, M.; Rodriguez, R. M.; Martin, J. D. J. Org. Chem. **1996**, 61, 3003.

(7) Corey, E. J. Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.

(8) See Supporting Information for additional information. An improved preparation of lactone **4** is provided.

(9) Torres, E.; Chen, Y.; Kim, I. C.; Fuchs, P. L. Angew. Chem., Int. Ed. 2003, 42, 3124.

(10) (a) Brunet, J. J.; Gallois, P.; Caubere, P. J. Org. Chem. 1980, 45, 1937. (b) Sondengam, B. L.; Charles, G.; Akam, T. M. Tetrahedron Lett. 1980, 44, 1069. (c) Koviach, J. L.; Chappell, M. D.; Halcomb, R. L. J. Org. Chem. 2001, 66, 2318. (d) Saiah, M. K. E.; Pellicciari, R. Tetrahedron Lett. 1995, 36, 4497. (e) Arefolov, A.; Panek, J. S. J. Am. Chem. Soc. 2005, 127, 5596. (f) Cossy, J.; Blanchard, N.; Meyer, C. Tetrahedron Lett. 2002, 43, 1801.

Benzene and cyclohexane were good solvents, but hexane gave a much slower reaction rate, while ethyl acetate and methanol favored over-reduction. Interestingly, the 1:1 anomeric mixtures of hemiacetals **6** and **7** largely isomerized to β -anomers (*Z*)-**8** and **9** during the hydrogenation. Protection of hemiacetal **8** led to methoxyacetal **10** by the action of PPTS in methanol (Scheme 2).

Seminal contributions of the Donohoe group at Oxford,¹² describing the ability of allylic and homoallylic alcohols to direct osmylation, inspired our extension of this effect to the chemistry of allylic hemiacetals. Treatment of (Z)-allylic lactol 8 using the Oxford stoichiometric OsO4/TMEDA/ CH₂Cl₂ protocol¹³ at low temperature provided a 9:1 mixture of diols 11/14 in near quantitative yield. Upjohn dihydroxylation¹⁴ using *catalytic* OsO₄ and NMO in aqueous acetone at room temperature for 12 h produced 95% yield of diols 11/14 in a less selective 3:1 ratio. Attempts to employ the Sharpless alkaloid catalyzed AD protocol on the hemiacetals led to no reaction, even after several days at room temperature.¹⁵ By way of comparison, methoxyacetal **10** afforded less than 25% of dihydroxylated methoxyacetals 13/16 with minimal selectivity under both conditions. The stereochemistry of diol 11 was verified by X-ray.⁸ As anticipated, the effect of the side chain terminus was minimal, with TBS ether (Z)-9 showing a 4:1 preference in favor of diol 12 using the Upjohn method (Table 1). Stereochemistry of this

Table 1. Dihydroxylation of (Z)-8, 9, and 10

8 - 10 → ^X	OTBS HO OMe	OR OH OTBS DTBS	OTBS X M OMe 14 X=SO2	OR OH WR OTBS CO ₂ Me		
	12 X=OTBS	, R= H	15 X=OTBS, R= H			
	13 X=SO2PI	h, R=CH₃	16 X=SO ₂ Ph, R=CH ₃			
substrate	R	${\rm conditions}^a$	% yield ^b	ratio ^c		
8	B H A		quant	9:1 (11/14)		
8	8 H E		95	3:1 (11/14)		
9	9 H		95	4:1 (12/15)		
10	0 CH ₃		$< 25^d$	1.5:1 (13/16)		
10	CH_3	В	$< 25^d$	$1.5:1(\mathbf{13/16})$		

^{*a*} Condition A: OsO₄ (1 equiv), TMEDA (1.1 equiv), CH₂Cl₂, -78 °C to rt, 12 h. Condition B: OsO₄ (5 mol %), NMO (3 equiv), acetone–H₂O (4:1), rt, 12 h. ^{*b*} Isolated yield. ^{*c*} Determined by ¹H NMR. ^{*d*} The remainder of the mixture is recovered starting material.

^{(3) (}a) Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchelle, H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15433. (b) Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.; Mitchelle, H. J.; Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.; O'Brate, A. J. Am. Chem. Soc. 2003, 125, 15443 and references cited therein. (c) Wehlan, H.; Dauber, M.; Fernaud, M. T. M.; Schuppan, J.; Mahrwald, R.; Ziemer, B.; Garcia, M. E. J.; Koert, U. Angew. Chem., Int. Ed. 2004, 43, 4597. (d) Daniel, P. T.; Koert, U.; Schuppan, J. Angew. Chem., Int. Ed. 2006, 45, 872 and references cited therein. (e) Wu, B.; Liu, Q.; Sulikowski, G. A. Angew. Chem., Int. Ed. 2004, 43, 6673 and references cited therein. (f) Crimmins, M. T.; Christie, H. S.; Chaudhary, K.; Long, A. J. Am. Chem. Soc. 2005, 127, 13810. (g) Chen, Y.; Evarts, J. B.; Torres, E.; Fuchs, P. L. Org. Lett. 2002, 4, 3571. (h) Abe, K.; Kato, K.; Arai, T.; Rahim, M. A.; Sultana, I.; Matsumura, S.; Toshima, K. Tetrahedron Lett. 2004, 45, 8849. (i) Chang, S. S.; Xu, J.; Loh, T. P. Tetrahedron Lett. 2003, 44, 4997. (j) Paquette, W. D.; Taylor, R. E. Org. Lett. 2004, 6, 103.

reaction was assigned by comparison of the 1 H NMR and 13 C NMR spectra with those of diols **11** and **14**.

In order to secure the isomeric *trans*-hemiacetals (*E*)-17 and 18 (Scheme 3), we resorted to thermodynamic equilibration of the (unobservable) enone via Michael addition elimination using thiophenol and quinoline or pyridine in toluene at 60 °C. Significantly, employing pyridine or quinoline effectively affords (*E*)-17 and 18, but stronger bases, such as triethylamine, generated substantially more impurities. Crude (*Z*)-8 and 9 can be taken directly into the equilibration reaction when quinoline is used for the hydrogenation reaction. Other olefin equilibration reagents, such as Bu_3P^{16} and I_2 ,¹⁷ were not successful, and AIBN-mediated radical processes generated many unwanted products. Access to allyl methoxyacetal 19 was again assured by acid-catalyzed methanolysis of 17 in 95% yield.

Directed dihydroxylation of **17** was completed in 12 h to quantitatively give a 5:1 ratio of **20/23**. Substrates **17** and **18** give 2–2.5:1 stereoselectivity under the Upjohn conditions. Allyl methoxyacetal **19** affords the opposite selectivity, favoring the "natural" diastereomer **25**, consistent with Koert, who obtained 6:1 selectivity with his (*E*)-allylic methoxyacetal substrate (box, Table 2).¹⁸ As with the *cis*-series of

^{*a*} Condition A: OsO₄ (1 equiv), TMEDA (1.1 equiv), CH₂Cl₂, -78 °C to rt, 12 h. Condition B: OsO₄ (5 mol %), NMO (3 equiv), acetone-H₂O (4:1), rt, 12 h. ^{*b*} Determined by ¹H NMR. ^{*c*} Condition: OsO₄ (10 mol %), NMO (3 equiv), acetone-H₂O (4:1), rt, 2 days.

Table 1, the milder (but stoichiometric) hemiacetal-directed dihydroxylation using condition A gave better selectivity and yields than condition B.

Stereochemistry of the above diastereomers was assigned by comparison with the NMR spectra of compounds sharing similar core structures.¹⁸ Additionally, **26**⁸ was confirmed by X-ray (see Supporting Information).

Useful trends are observed from the ¹³C NMR shifts available from the diols produced in this study (Table 3),⁸

Tal	ble 3.	¹³ C NI	MR Shif						
$X = SO_2Ph$				X = OTBS					
	C-17	C-19	C-20	C-21		C-17	C-19	C-20	C-21
11	81.1	S 70.6	S 76.9	100.3	12	81.5	S~70.4	S 75.5	100.8
14	84.7	R 73.0	R 74.0	101.8	15	85.5	R 73.0	R 74.7	101.9
20	81.4	R~67.3	S~73.3	101.1	21	81.5	R~67.5	S~73.2	101.2
23	80.4	S~65.5	R 73.0	102.9	24	80.7	S~66.1	R 73.0	102.7
22	82.5	$R \ 68.9$	S 75.8	102.1					
25	80.5	S~67.4	R 74.9	103.6					

for example: (1) C-20(S) > C-20(R), C-19(R) > C-19(S) for all pairs, more importantly (2) *the chemical shift of C-21* appears further downfield for C-20(R) than C-20(S), and *the chemical shift of C-17* is further downfield for C-19(R).

As expected, osmylation reactivity and selectivity are related to both the anomeric stereochemistry and the olefin geometry. The products obtained support a Donohoe-type H-bond-directed dihydroxylation mechanism for the allylic hemiacetals. As shown in Figure 2, both the (Z)- and (E)-

olefins prefer Si face directed osmylation, while the preference is diminished with the (*E*)-hemiacetals and reversed with the (*E*)-methoxy acetals, consistent with the Koert

(15) (a) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. *J. Org. Chem.* **1992**, *57*, 2768. (b) Eames, J.; Mitchell, H. J.; Nelson, A.; O'Brien, P.; Warren, S.; Wyatt, P. *Tetrahedron Lett.* **1995**, *36*, 1719. (c) Gao, D.; O'Doherty, G. A. *Org. Lett.* **2005**, *7*, 1069.

(16) Bella, M.; Jorgensen, K. A. J. Am. Chem. Soc. **2004**, 126, 5672. (17) Schrader, T. O.; Snapper, M. L. J. Am. Chem. Soc. **2002**, 124, 10998.

⁽¹¹⁾ Sato, K.; Hyodo, M.; Aoki, M.; Zheng, X. Q.; Noyori, R. Tetrahedron 2001, 57, 2469.

^{(12) (}a) Donohoe, T. J.; Blades, K.; Moore, P. R.; Waring, M. J.; Winter, J. J. G.; Helliwell, M.; Newcombe, N. J.; Stemp, G. J. Org. Chem. 2002, 67, 7946. (b) Donohoe, T. J. Synlett 2002, 8, 1223 and references therein.

⁽¹³⁾ Donohoe, T. J.; Newcombe, N. J.; Waring, M. J. *Tetrahedron Lett.* **1999**, *40*, 6881.

⁽¹⁴⁾ VanRheenen, V. V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 76, 1973.

findings.¹⁸ As expected, the effect is greatest at low temperature in the stoichiometric osmylation, parallel to that seen in the Donohoe studies.^{12,13}

An alternative approach to the C-19,20 diols explored epoxide opening (Scheme 4). Epoxidation of **8** and **9** by

DMDO (dimethyldioxirane)¹⁹ afforded a mixture of two epoxides of 75:25 dr in essentially quantitative yield. Stereochemistry of the two diastereomers was hypothesized based upon the above ¹³C NMR trends with C-19(*S*),20(*S*) as the major epoxide.⁸ Intramolecular epoxide opening protocols with derivatives of major diastereomer **27** from the dioxirane reaction bearing esters,²⁰ carbamates,²¹ or carbonates²² at the anomeric position failed.²³ Unsatisfactory intermolecular epoxide openings included Sc(OTf)₃,²⁴ RuCl₃,²⁵ Cu(OTf)₂,²⁶ AlCl₃,²⁷ and BF₃•OEt₂.²⁸ However, reaction with 20 mol % of anhydrous SnCl₂ in acetone²⁹ at 50–55 °C for

(20) (a) Izumi, M.; Shen, G. J.; Sgarbi, S. W.; Nakatani, T.; Plettenburg,
O.; Wong, C. H. J. Am. Chem. Soc. 2001, 123, 10909. (b) Ishihara, K.;
Kubota, M.; Kurihara, H.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 4413.

(21) Minami, N.; Ko, S. S.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 1109.

(22) Clark, D. A.; Riccardis, F. D.; Nicolaou, K. C. Tetrahedron 1994, 50, 11391.

(23) (a) Caron, M.; Sharpless, K. B. J. Org. Chem. **1985**, 50, 1557. (b) Honda, T.; Ohta, M.; Mizutani, H. J. Chem. Soc., Perkin Trans. 1 **1999**, 23.

20 min provided dioxolane **29** in 80% yield. Although the stereochemistry at C-19,20 is tentative, it is assigned as C-19(R),20(S) based upon mechanism and ¹³C NMR shift values (cf. Table 3).⁸

Simultaneous primary desilylation and protection of the C-21 anomeric position of **12** can be effected using PPTS in methanol. Treating the crude methoxyacetal with triphosgene gives the cyclic carbonate which is further converted to iodide **30**, ready to couple (Scheme 5).⁸

Hydrogen-bond-directed osmylation enables synthesis of four diastereomeric diols from a single (*Z*)-allylic hemiacetal. These materials will be converted to C-19,20 analogues of apoptolidin for SAR studies. Further reports on this endeavor will be reported in due course.

Acknowledgment. We thank Dr. Karl Wood and Dr. Phillip Fanwick of Purdue University for MS and X-ray data.

Supporting Information Available: Experimental procedures, spectroscopic and analytical data for new compounds, ¹H and ¹³C NMR spectra of key compounds, including X-ray data for **11** and **26** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL0707564

- (26) Tai, C.; Kulkarni, S. S.; Hung, S. C. J. Org. Chem. 2003, 68, 8719.
 (27) Diez, D.; Beneitez, M. T.; Marcos, I. S.; Garrido, N. M.; Basabe,
 P.; Urones, J. G. Tetrahedron: Asymmetry 2002, 13, 639.
- (28) Huntey, C. F. M.; Wood, H. B.; Ganem, B. *Tetrahedron Lett.* **2000**, *41*, 2031.
- (29) Vyvyan, J. R.; Meyer, J. A.; Meyer, K. D. J. Org. Chem. 2003, 68, 9144.

^{(18) (}a) Schuppan, J.; Wehlan, H.; Keiper, S.; Koert, U. Angew. Chem., Int. Ed. **2001**, 40, 2063. (b) Schuppan, J.; Ziemer, B.; Koert, U. Tetrahedron Lett. **2000**, 41, 621.

⁽¹⁹⁾ Orendt, A. M.; Roberts, S. W.; Rainier, J. D. J. Org. Chem. 2006, 71, 5565.

⁽²⁴⁾ Schneider, C.; Sreekanth, A. R.; Mai, E. Angew. Chem., Int. Ed. 2004, 43, 5691.

⁽²⁵⁾ Iranpoor, N.; Kazemi, F. Synth. Commun. 1998, 28, 3189.