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Abstract: Ozonolysis of a variety of (tetraydrofuran-2-yl)tri-n-butylstannanes affords the corresponding y- 
butyrolactones in good to excellent yields. This reaction is tolerant to a range of other functional groups and provides 
access to substituted y -butyrolactones not available from aldol reactions of the parent lactone. 
Copyright © 1996 Elsevier Science Ltd 

Recently we demonstrated that the trialkylstannyl group in the readily available tetrahydrofuran 1 ~ serves as 

a removable stereocontrol element for the preparation of 2,3- disustituted 2 and 2,3,3-trisubstituted 3 

tetrahydrofurans. The tin moiety also behaves as a stericaUy demanding substituent in the enolisation of  the ester 

group, controlling enolate geometry and thereby influencing the stereochemical outcome of the aldol reactions 4"~ 

of  1. Thus far we have concentrated upon alkylation strategies for the unmasking of  the carbon - tin bond, the 

stereochemical outcome of which depends upon the nature of the substrate and reaction conditions employed, 2.3.6 

Scheme 1. In this Later we report a facile oxidative functionalisation of  the these stannanes which affords 

rapid access to a variety o fy  - butyrolactones. 
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Initial attempts to effect oxidation of  stannanes such as 1 focused upon the methodology developed by Still 7 

which utilises chromium (VI) regents. For example, treatment of  the stannane 2 with CrO 3 - pyridine in CH2C12 

(10 eq.; 20 °C; 9 hrs.) afforded thelactone 3 in 26% isolated yield. In contrast oxidation of  the ester 1 using the 

same procedure was wholly unsatisfactory, affording the lactone 4 in only trace amounts (4% isolated yield), 
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Scheme 2. Nevertheless we were encouraged by these results and a variety of oxidising agents were screened ~ 

in order to optimise this transformation. After some experimentation we adopted the procedure developed by 

Linderman, 9 which utilises ozone as the oxidising agent, and were pleased to find that this procedure proved to be 

very genial and tolerant of a number of other functional groups, Table. 
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Scheme 2 

We have shown during the course of our initial studies that this oxidation sequence is compatible with a 

number of other functional groups:- acetonide 1° (e.g. substrates 5), ester (e.g. substrates 1 and 7), ketone 

(substrate 17) and unprotected hydroxylic functionality (substrates 9, 1 1 and 13), Table. Oxidation of the 

acetal 15 also proceeds smoothly and is not hampered by competing oxidation of the doubly activated acetal C-H 

bond. Direct comparison of the chromium and ozonolysis protocols, as in the ease of the ester 1, clearly 

underscores the advantages of the ozonolysis procedure, Scheme 2. In a more demanding test of the 

chemoselectivity of this lactone synthesis, oxidation of the readily available sulfide 19 was next attempted. 

Unfortunately, exposure of a solution of 19 in CH2C12 at -78 °C to ozone as above resulted in a complex reaction 

mixture from which the hydroxy-lactone 14 and the sulfoxide-lactone 2 0 were isolated in low yield (c.a. 10%), 

Scheme 3. 

MoO2C Me H MeO2C~, .,,SOPh 
"'"'C02Me 60°/° ~ P h  ('i) 02C~ ~ i  0 "O" "SnBu3 ~ SnBua (i) ,.- , + 

u -o 
1 19 14 20 

Reagents and conditions: (i) a. LDA, THF, -78°C; b. PhSSO2Ph , THF, -78 °C; (ii) O a, CH2CI2, -78 °C 

Scheme 3 

One synthetic advantage of this chemistry is that aldol derivatives such as 21 become readily available via 

the stannane 1. Intermediates such as 2 2 are not directly accessible from the aldol reactions of the lactone 4 itself 

due to the reversible nature of this particular reaction. Indeed, ozonolysis of the tin - aldol product 2 3 resulted in 

the isolation of the lactone 4 presumably via a retro - aldol reaction, Scheme 4. 
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Table: Ozonol 'sis of Stannanes* 

Stannane Lactone O; (% yield) 
~,,C02Me ~C02Me 

~ SnBu3 (1) ~ 0  (4) (63%) 

Ph Ph 
MeO2C T 

~ 0  C02Me ~ C02Me Me02C 

~ . ~  (7) (8)(67%) 

u -SnBu 3 
Ph Ph 

HO Ph HO Ph 

(11) (12) (72%) 

Me02C Me02C 

~ O H  . , ~ O o H  (13) (14) (63%) 

"O" ~SnBu3 
O O 

"O" ~SnBu3 u O (16) 

Ph O Ph O 

Ph (17) u ~ O  v "Ph (18) (83% 

All ozonolysis experiments were conducte~ in CH2CI 2 at -78 °C. Yields refer to isolated 
products after column chromatography. $ Single diastereoisomer. 
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General Experimental Procedure 

The following procedure is representative. Stannane 1 (130 mg, 0.31 mmole) was dissolved in CH2C12 (5 ml) 

and the solution cooled to -78 °(2. Ozone gas was bubbled through the solution until a faint blue colour was 

observed. The reaction mixture was purged with dinitrogen and concentrated in vacuo. Flash chromatography of 

the residue afforded the lactone 4 as a viscous oil, yield 28 mg (63 %). 
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