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     A remarkable effect of solvent on the enantioselectivity was 

observed in the asymmetric Diels-Alder reaction of 3-(2-

alkenoyl)-1,3-oxazolidin-2-ones and dienes catalyzed by a chiral 

titanium reagent, and the Diels-Alder adducts were obtained in 

high enantioselectivity when alkyl-substituted benzenes were 

employed as the solvent.

      Previously we reported that the asymmetric Diels-Alder reaction between 3-(2-

alkenoyl)-1,3-oxazolidin-2-ones (1) and cyclopentadiene proceeds efficiently by 

the combined use of a catalytic amount of a chiral titanium alkoxide, which is 

prepared from the chiral 1,4-diol 2 and dichlorodiisopropoxytitanium(IV), in the 

presence of Molecular Sieves 4A (zeolite) to afford the corresponding Diels-Alder 

adducts in good enantioselectivity.1) In order to expand the utility of this 

reaction, we next examined the reactions of a fumaric ester derivative and acyclic 

dienes, which give synthetically useful cyclohexane dicarboxylic acid derivatives. 

However, compared with the reactions carried out in the presence of excess amounts 

of the chiral titanium reagent,2) this catalytic process gives poorer results in 

these cases. For example, the Diels-Alder adduct of the fumaric ester derivative 

of 1,3-oxazolidin-2-one 1a and butadiene was obtained in only 32-45% e.e.,3) as 

against 83% e.e. when two molar amounts of the chiral titanium alkoxide was used. 

In order to achieve the wide applicability of this catalytic procedure, the 

reaction conditions were examined in detail.
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 The reaction of the 1,3-oxazolidin-2-one derivative of fumaric ester 1a and 

butadiene was examined in various solvents in the presence of a 10% molar amount 

of the chiral titanium alkoxide and powdered Molecular Sieves 4A. The typical 

experimental procedure was as follows: The chiral titanium alkoxide (ca. 0.05 M 

toluene solution) was prepared simply by mixing equimolar amounts of the chiral 

diol 2 and dichlorodiisopropoxytitanium(IV) in toluene. To a toluene (4 ml) 

suspension of powdered Molecular Sieves 4A (ca. 120 mg) were added the above 

toluene solution of the titanium alkoxide (0.1 mmol), a toluene solution (8 ml) of 

la (1 mmol) and 1,3-butadiene (ca. 1 g), and the reaction mixture was stirred at 

room temperature. 

     The enantioselectivity displayed by the reactions in various solvents are 

summarized in the following table. It was noted that the enantioselectivity is 

influenced strongly by the solvent, and that alkyl substituted benzenes are very 

suitable solvents for the present reaction. The enantioselectivity is dependent 

on the number of methyl groups on the benzene ring and the optical purity of the 

adduct 3a was greatly increased in the order of toluene, xylenes,and 

trimethylbenzenes(TMB). Furthermore, rather high enantioselectivity was attained 

by employment of hexylbenzene as the solvent, and the trans-4-cyclohexene-1,2-

dicarboxylic acid derivative 3a was obtained in 98% yield with 85% e.e.

Table 1. Enantioselectivity in the Diels-Alder reaction of 1a and 

 butadiene

a)Optical purity of the product was determined by the measurement 

of NMR spectrum of the corresponding dimethyl ester (Mg(OMe)2/MeOH) 

using Eu(hfc)3 as chiral shift reagent. The -OMe signal separates 

completely. In every case, the adduct had 1R,2R absolute 

configuration, which was determined by the optical rotation of the 

dimethyl ester.5) 

b)TMB: trimethylbenzene. c)TIPB: triisopropylbenzene.
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     The generality of the solvent effect on the enantioselectivity was examined 

in the following several examples using 1,3,5-trimethylbenzene (1,3,5-TMB) as the 

common solvent (under unoptimized reaction conditions). Reaction of 1a with 

isoprene was also found to proceed smoothly in 1,3,5-TMB to afford the 4-

methylcyclohexene-1,2-dicarboxylic acid derivative 3b in 92% e.e.4)

     An example of the solvent effect is also seen in the reaction of 3-acryloyl-

1,3-oxazolidin-2-one (1b) which did not give sufficient asymmetric induction by 

the previous method.1) The reaction of 1b with butadiene in 1,3,5-TMB gives the 

3-cyclohexenecarboxylic acid derivative 3c in 77% optical purity.6)

      The reactions of various 3-(3-substituted acryloyl)-1,3-oxazolidin-2-ones 1c-

e with cyclopentadiene were found to proceed with higher asymmetric induction by 

using 1,3,5-TMB as the solvent, as compared with the results of the reactions in 

toluene, and the corresponding endo-adducts 3d-f are prepared in 75-90% e.e.

Table 2. Reactions of 1c-e and cyclopentadiene



2412 Chemistry Letters, 19 8 7

     As shown by the above results, the chiral titanium catalyst-Molecular Sieves 

4A system is widely applicable to the reactions of a variety of dienophiles and 

dienes when a suitable alkyl substituted benzene is employed as a solvent, and 

synthetically important Diels-Alder adducts are prepared in high optical purities 

by the present catalytic process. 
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