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Abstract: The synthesis of 1,6,8-trioxadispiro[4.1.5.3]pentadecanes 15 and 16 from D-galactopyranose 
is described. The key steps are two intramolecular hydrogen abstraction reactions promoted by alkoxy 
radicals. Copyright © 1996 Elsevier Science Ltd 

The dispiroacetal system is a basic substructure present in a number of natural polyether antibiotics 

such as, for example, narasin, salinomycin and CP 44,661. I Most of the reported syntheses of these dispi- 

roacetais 2 involve at least an acid-catalyzed intramolecular acetalization to establish one of the spiroacetal 
3 centres, which may prove to be unsuitable in the presence of acid-sensitive functional groups. 

/ 
~ ' ' o R  

Scheme 1 
cA, 

Ho.~O ,.OH 

" " ~ ' "  OR 
1 

Recently 4 we have reported on the synthesis of several optically active spiroacetals from carbohy- 

drates with an intramolecular hydrogen abstraction reaction as the key step for the spiroacetal ring system 

formation. We wish to report here on an extension of this methodology for the synthesis of trioxadispiro 

systems of type A starting from D-galactopyranose 1 (Scheme I). 
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then Ac20/Py (56%); b) 80% AcOH/I'-I20, 50 °C (80%). ii: a) 

(imid)2C=S/CH3CN (90%); b) P(OMe)3 (80%); c) H2/Pd(OH)EC (85%). iii: BCI3.Me2S (80%). iv: a) K2CO3 (100%); b) 
tBuPh2SiCI/imidazole (79%). v: Me2SO,dNaOH (87%). 
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S c h e m e  3 i) CCI4/Ph3P and then 4-pcntenylmagnesium bromide (74%). ii) O3/CH2CI2/MeOH and then NaBH4 (81%). iii) 

DIB/12, hv (52%). iv) AcOI-I/HCI (IIX)%). 

The 3,4-dideoxy-D-galactopyranose derivative 5 was prepared as depicted in Scheme 2. The protection 

of the hydroxyl groups at C-3 and C-4 of the benzyl (X-D-galactopyranose 2, main anomer obtained by 

benzylation of 1, by treatment with 2,2-dimethoxypropane followed by acetylation and deprotection of the 

acetonide under acidic conditions gave the diol 3 in 45% overall yield. This cis-diol was then transformed 

into the corresponding cyclic thionocarbonate and subsequently removed with trimethyl phosphite. 5 Further 

reduction of the resulting olefin with H2/Pd(OH)2/C gave 4, which underwent selective deprotection of the 

hydroxyl group at the anomeric centre (BCI3.Me2S) 6 to afford the required compound 5. 

The following step is the preparation of the suitable side chain at the anomeric carbon for performing 

the subsequent cyclization. We have previously observed 7 that 1,3-steric interactions prevent the 1,6-intra- 

molecular hydrogen abstraction: thus, the tetrahydropyran ring must be the first cycle to be formed. All the 

attempts at the homologation at C-I of 5 by reaction with CCI4/Ph3P followed by treatment with 4-pen- 

tenylmagnesium bromide, 8 under different reaction conditions, were unsuccessful. 9 

The diacetyl derivative 4 was then transformed into the O-methyl protected compound 8 in a 51% 

overall yield, as shown in Scheme 2. Homologation of 8 by reaction with CCI4/Ph3P (THF, reflux, 3h) 

followed by treatment of the crude chloride derivative with freshly prepared 4-pentenylmagnesium bromide 

(Et20, 0 °C, lh) was now a clean reaction leading to a (ot:13=3.6:1) mixture of C-I pentenyl derivatives 9a 

and 9b in 74% yield (Scheme 3). Ozonolysis of the major isomer 9a followed by NaBH4 reduction gave 

rise to alcohol 10 (81%). 
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Figure X-Ray of compound 11 ~ ~(3 

The intramolecular hydrogen abstraction reaction was achieved by reaction of 10 with (diacetoxy- 

iodo)benzene (DIB) and iodine 10 (1.6 mmol and 1 mmol, respectively, per mmol of substrate) in cyclohex- 

ane at 40 °C under irradiation with two 100W tungsten-filament lamps for 70 minutes, yielding the spi- 

roacetal 11 (30%) 11 besides its epimer at C-1 12 (22%). The minor component 12 was quantitatively trans- 

formed into 11 by acid treatment (AcOH with traces of HCI, r.t., 2 h). 

The spectroscopic data of both compounds agree with the proposed structures. The stereochemistry at 

C-1 of the spiroacetal 11 was solved by single crystal X-ray analysis (Figure). 12 
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S c h e m e  4 i: a) Bu4NF (88%); b) TsCI/Py (100%); Allylmagnesium bromide/Et20 (0 °C to r.t.) (85%). ii: O3/CH2CI2/MeOH 

and then NaBH4 (85%). iii: DIB/I2, hv (56%). 

To prepare the five-membered ring in 11 a suitable homologation at C-6 of the original carbohydrate 

is needed. Hydrolysis of the silyl protecting group and subsequent allylation of the corresponding 6-tosyl 

derivative with freshly prepared allylmagnesium bromide in ether gave the butenyl derivative 13 in 75% 

overall yield (Scheme 4). 
The required alcohol 14, obtained by ozonolysis and NaBH4 reduction of 13, underwent cyclization by 

reaction with DIB/I 2 in cyclohexane at room temperature and under sunlight for 4 h, yielding the isomeric 

dispiroacetals 15 and 16 in 56% yield (ratio 15:16=1.4:1). 13 The structures of 15 and 16 and the configura- 

tion of the spirocentres were unambiguously established by COSY, HMQC and HMBC experiments, the 

observed ROESY interactions being indicated in Scheme 4. 
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