58 Communications SYNTHESIS substances as well as their analogues has been extensively studied³ because of their interesting physiological activities. A novel synthesis of 2-methoxy-3-methyl 2,3-dihydrobenzofurans 5a-d is presented in this communication. | *** | | - | | |-----|-----------------|-----------------|-----------------| | | R ¹ | R ² | R ³ | | а | CH ₃ | CH ₃ | Н | | b | CH ₃ | Н | CH ₃ | | С | CH₃ | Br | Н | | d | CH ₃ | CI | Н | | е | н | Н | Н | The o-isopropenylphenol 1a was prepared by a route4 involving the action of alkali on 4,6-dimethylcoumarin. Acetylation of 1a yielded the acetate 2a, which furnished the epoxide 3a on treatment with perbenzoic acid. The epoxide 3a underwent a thermal rearrangement to give the enol acetate 4a. The facile conversion of the aldehyde 7 ($\equiv 2$, $R^1 = CHO$, $R^2 = H$, $R^3 = CH_3$) to the methoxy compound 8 $(=5, R^1 = -CH_2, R^2 = H, R^3 = CH_3)$ observed by us⁵ suggested that the enol acetate 4a, being a masked aldehyde, can be transformed to the dihydrobenzofuran 5a. Treatment of 4a with hot methanol in the presence of p-toluenesulphonic acid furnished a 4:1 mixture of 5a and 6a. The trans-stereochemistry is assigned to the major product on the basis of the observed coupling constant (J=2 Hz) between the protons at C-2 and C-3. Employing the sequence of reactions described above, the isopropenyl phenols 1b-d were also transformed to the dihydrobenzofurans 5b-d. # Synthesis of 2,3-trans-Disubstituted 2,3-Dihydroben-zofurans¹ Vijay V. DHEKNE, A. S. RAO* National Chemical Laboratory, Poona-411008, India A number of substituted 2,3-dihydrobenzofurans have been isolated from natural sources². The synthesis of these Table 1. 2-(2-Acetoxyaryl)-alk-1-enes^a 2a-e and 2-(2-Acetoxyaryl)-oxiranes 3a-e | Prod-
uct | Yield
[%] | b.p./torr | Molecular
formula ^b | ¹H-N.M.R. (CCl₄/TMS)
δ [ppm] | |--------------|--------------|-----------|---|--| | 2a | 85 | 130°C/2 | C ₁₂ H ₁₄ O ₂
(190.2) | 2.0 (m, 3H, H ₃ C -C C); 2.13 (s, 3H, H ₃ C -CO O); 2.32 (s, 3H, Ar—CH ₃); 4.90 (m, 1H _{vinyl}); 5.07 (m, 1H _{vinyl}) | | 2b | 80 | 90°C/0.5 | $C_{12}H_{14}O_2$ (190.2) | 2.02 (m, 3H, H ₃ C – C–C); 2.13 (s, 3H, H ₃ C – CO–O); 2.32 (s, 3H, Ar – CH ₃); 4.90 (m, 1H _{vinyl}); 5.07 (m, 1H _{vinyl}) | | 2c | 80 | 140°C/5 | $C_{11}H_{11}BrO_2$ (255.1) | 2.03 (m, 3H, H ₃ C—C—C); 2.18 (s, 3H, H ₃ C—CO—O); 5.00 (m, 1H _{vinyl}); 5.15 (m, 1H _{vinyl}) | | 2d | 85 | 130°C/2 | C ₁₁ H ₁₁ ClO ₂ (210.7) | 2.02 (m, 3H, H ₃ C C—C); 2.15 (s, 3H, H ₃ C—CO—O); 5.00 (m, 1H _{vinyl}); 5.15 (m, 1H _{vinyl}) | | 2e | 75 | 85 °C/1 | $C_{10}H_{10}O_2$ (162.2) | 2.15 (s, 3H, H ₃ C-CO-O); 5.17 (q, 1H _{vinyl} , J =2, 10 Hz); 5.57 (q, 1H _{vinyl} , J =2, 18 Hz) | | 3a | 95 | - Names | C ₁₂ H ₁₄ O ₃ (206.2) | 1.50 (s, 3H, H ₃ C-oxirane); 2.18 (s, 3H, H ₃ C - CO O); 2.28 (s, 3H, Ar CH ₃); 2.62 (m, 2H _{oxirane}) | | 3b | 97 | | $C_{12}H_{14}O_3$ (206.2) | 1.52 (s, 3H, H ₃ C-oxirane); 2.22 (s, 3H, H ₃ C-CO-O); 2.30 (s, 3H, Ar CH ₃); 2.63 (m, 2H _{oxirane}) | | 3c | 96 | | $C_{11}H_{11}BrO_3$ (271.1) | 1.55 (s, 3H, H ₃ C-oxirane); 2.27 (s, 3H, H ₃ C - CO - O); 2.70 (m, 2H _{oxirane}) | | 3d | 95 | | C ₁₁ H ₁₁ ClO ₃ (226.7) | 1.55 (s, 3H, H ₃ C-oxirane); 2.27 (s, 3H, H ₃ C - CO-O); 2.70 (m, 2H _{oxirane}) | | 3e | 95 | Wester/ | $C_{10}H_{10}O_3$ (178.2) | 2.20 (s, 3H, H ₃ C—CO—O); 2.55 (m, 1H _{oxirane}); 2.95 (m, 1H _{oxirane}); 3.80 (m, 1H _{oxirane}) | ^{*} The phenols 1a-e were prepared by known methods^{4,7,8}. Table 2. Enol Acetates 4a-e | Prod-
uct | Yield
[%] | m.p. | Molecular
formula* | I.R. (nujol)
ν [cm ⁻¹] | ¹H-N.M.R. (CCl ₄ /TMS, 60 MHz)
δ [ppm] | |-----------------|--------------|--------|--|---------------------------------------|--| | 4a | 35 | 77 °C | C ₁₂ H ₁₄ O ₃ (206.2) | 3330, 1735, 1645,
1610, 1260 | 1.98 (d, 3H, H ₃ C—C—C, $J=2$ Hz); 2.18 (s, 3H, H ₃ C—CO—O); 7.08 [m, 1H, HC(OAc)—C] | | 4b | 40 | 92°C | $C_{12}H_{14}O_3$ (206.2) | 3310, 1730, 1660,
1620, 1265 | 2.02 (d, 3H, H ₂ C –C=C, J =2 Hz); 2.20 (s, 3H, H ₃ C –CO – O); 7.17 [m, 1H, HC(OAc) –C] | | 4c | 25 | 101 °C | $C_{11}H_{11}BrO_3$ (271.1) | 3250, 1720, 1640,
1600, 1250 | 1.98 (d, 3H, H ₃ C – C – C, J =2 Hz); 2.18 (s, 3H, H ₃ C – CO – O); 7.12 [m, 1H, HC(OAc)=C] | | 4d | 25 | 60°C | C ₁₁ H ₁₁ ClO ₃ (226.7) | 3400, 1730, 1640,
1600, 1260 | 2.00 (d, 3H, H_3C — C = C , J =2 Hz); 2.20 (s, 3H, H_3C — C O—O); 7.23 [m, 1H, HC (OAc)— C] | | 4e ^b | 20 | 140°C | $C_{10}H_{10}O_3$ (178.2) | 3200, 1715, 1645,
1600, 1250 | 2.07 (s, 3H, H ₃ C CO O); 6.87 (d, 1H _{vinyl} , $J = 13$ Hz); 8.42 (d, 1H _{vinyl} , $J = 13$ Hz) ^c | ^a The microanalyses were in satisfactory agreement with the calculated values ($C \pm 0.23$, H ± 0.10). Table 3. 2-Methoxy-3-methyl-2,3-dihydrobenzofurans 5a-d | Prod-
uct | Yield ^a
[%] | b.p./torr | Molecular
formula ^b | ¹H-N.M.R. (CCl ₄ /TMS)
δ [ppm] | |--------------|---------------------------|-----------|--|---| | 5a | 64 | 120°C/2 | $C_{11}H_{14}O_2$ | 1.20 (d, 3H, H ₃ C—CH, J=6 Hz); 2.25 (s, 3H, Ar—CH ₃); 3.20 (m, 1H, H—C-3); 3.42 (s, | | 5b | 60 | 125°C/2 | (178.2) $C_{11}H_{14}O_{2}$ | 3H, OCH ₃); 5.02 (d, 1H, H C-2, $J=2$ Hz)
1.20 (d, 3H, H_3 C—CH, $J=6$ Hz); 2.27 (s, 3H, Ar—CH ₃); 3.17 (m, 1H, H—C-3); 3.42 (s, | | | | -, | (178.2) | 3H, OCH ₃); 5.03 (d, 1H, H \sim C-2, $J=2$ Hz) | | 5e | 60 | 130°C/3 | $C_{10}H_{11}BrO_2$ | 1.25 (d, 3H, H_3C —CH, $J=6$ Hz); 3.23 (m, 1H, H—C-3); 3.45 (s, 3H, OCH ₃); 5.08 (d. | | 5d | 50 | 115°C/1 | (243.1)
C ₁₀ H ₁₁ ClO ₂
(198.7) | 1H, H—C-2, $J=2$ Hz)
1.25 (d, 3H, H ₃ C—CH, $J=6$ Hz); 3.33 (m, 1H, H—C-3); 3.47 (s, 3H, OCH ₃); 5.12 (d, 1H, H—C-2, $J=2$ Hz) | ^a In addition to 5a-d, the corresponding cis-isomers 6a-d were also formed; in all cases the trans: cis ratio was 4:1. ^b The microanalyses were in satisfactory agreement with the calculated values (C ± 0.28 , H ± 0.22). ^b The coupling constant of 13 Hz between the vinyl protons is indicative for the (E)-isomer⁹. ^c Pyridine-d₅ solution. ^b The microanalyses were in satisfactory agreement with the calculated values (C ± 0.27 , H ± 0.04). ## 2-(2-Acetoxy-5-methylphenyl)-prop-1-ene (2a): A mixture of 2-(2-hydroxy-5-methylphenyl)-prop-1-ene⁴ (1a; 7.41 g, 50 mmol), pyridine (70 ml), and acetic anhydride (12.25 g, 120 mmol) is kept at room temperature for 24 h and then poured into ice/water (250 ml). After 2 h, the reaction product is extracted with ether (3×50 ml). The combined extracts are washed with water, 5% hydrochloric acid, and again with water. The ether layer is dried with sodium sulphate, the solvent distilled off, and the residue vacuum distilled to furnish the acetate 2a; yield: 8.01 g (84%); b.p. $130\,^{\circ}$ C/2 torr (see Table 1). I.R. (neat): $\nu = 1770$, 1635, 1605, 1580, 1210, 1180, 900 cm $^{-1}$. #### 2-(2-Acetoxy-5-methylphenyl)-2-methyloxirane (3a): To a solution of the acetate 2a (7.6 g, 40 mmol) in chloroform (30 ml) is added at 0° C a 0.85 molar solution of perbenzoic acid in chloroform (100 ml, 85 mmol). The reaction mixture is kept at 0-5 °C for 48 h, then washed with aqueous potassium carbonate solution, water, and dried with sodium sulphate. The solvent is removed in vacuum below 60 °C to furnish the oxirane 3a; yield: 8.10 g (98%) (see Table 1). I.R. (neat): $\nu = 1770$, 1210, 1055, 750 cm⁻¹. #### 2-(2-Hydroxy-5-methylphenyl)-prop-1-enyl Acetate (4a): Oxirane 3a (1.03 g, 5 mmol) is heated under nitrogen at 160 °C for 20 min and the products are distilled at 140–180 °C/2 torr. Recrystallisation of the distillate from petroleum ether (b.p. 60–80 °C) furnishes the enol ester 4a; yield: 0.36 g (35%) m.p. 77 °C (see Table 2). ### (\pm)-trans-3,5-Dimethyl-2-methoxy-2,3-dihydrobenzofuran (5a): A mixture of enol ester 4a (0.41 g, 2 mmol), methanol (25 ml), and p-toluenesulphonic acid (0.04 g) is heated under reflux for 1 h, cooled, diluted with ice/water, and extracted with ether. The ether extract is washed with water and dried with sodium sulphate. After distilling off the solvent the residue is vacuum distilled to furnish a 4:1 mixture (\pm)-5a and (\pm)-6a; yield: 0.29 g (80%); b.p. 120 °C/2 torr (see Table 3). 1.R. (neat): $\nu = 1620$, 1090, 930, 905, 805 cm⁻¹. ¹H-N.M.R. (CCl₄): δ = 1.20 (d, 3H, $\frac{1}{2}$ 3C -CH---, J= 6 Hz); 2.25 (s, 3H, Ar - CH₃); 3.20 (m, 1H, H--C-3); 3.42 (s, 3H, $\frac{1}{2}$ 3C - O --); 5.02 (d, 0.8H, H--C-2, J= 2 Hz); 5.28 (d, 0.2H, H - C-2, J= 6 Hz); 6.50-6.75 ppm (m, 3H_{arora}). The cis (6a) and trans (5a) isomers are separated by G.L.C. using an acetylated carbowax column at 160 °C; the trans-isomer has the shorter retention time. Received: May 2, 1979 (Revised form: July 16, 1979) Communication No. 2446 from the National Chemical Laboratory, Poona-411008, India. ² (a) L. H. Zalkow, N. Burke, G. Cabat, E. A. Grula, *J. Med. Chem.* 5, 1342 (1962). ² (b) H. Kakisawa, M. Tateishi, Bull. Chem. Soc. Jpn. 43, 824 (1970). ³ (a) G. R. Allen. J. Org. Chem. 33, 3346 (1968). ⁽b) L. H. Zalkow, M. Ghosal, J. Org. Chem. 34, 1646 (1969). ⁽c) E. C. Hayward, D. S. Tarbell, L. D. Colebrook, J. Org. Chem. 33, 399 (1968). ⁽d) A. Mustafa, in *The Chemistry of Heterocyclic Compounds*, Vol. 29, John Wiley & Sons Inc., New York, 1974. p. 143. ⁴ V. V. Dhekne, B. D. Kulkarni, A. S. Rao, *Indian J. Chem.* [B] 15, 755 (1977). ⁵ K. J. Divakar, B. D. Kulkarni, A. S. Rao, *Indian J. Chem.* [B] 15, 849 (1977). ⁶ M. P. Mertes, L. J. Powers, E. Shefter, J. Org. Chem. 36, 1805 (1971). ⁷ K. J. Divkar, A. S. Rao, Synth. Commun. 6, 423 (1976). ⁸ B. B. Corson et al., J. Org. Chem. 23, 544 (1958). ⁹ D. T. Witiak, B. B. Chaudhari, J. Org. Chem. 30, 1465 (1965).