Synthese der Stannatetraphospholane $(tBuP)_4SnR_2$ (R = tBu, nBu, C₆H₅) und $(tBuP)_4Sn(Cl)nBu$ Molekül- und Kristallstruktur von $(tBuP)_4Sn(tBu)_2$

D. Bongert, H.-D. Hausen, W. Schwarz, G. Heckmann und H. Binder*

Stuttgart, Institut für Anorganische Chemie der Universität

Bei der Redaktion eingegangen am 15. Dezember 1995.

Professor Ekkehard Fluck zum 65. Geburtstag gewidmet

Inhaltsübersicht. Bei der Reaktion zwischen dem Diphosphid $K_2[tBuP-(tBuP)_2-PtBu]$ 4 und den Halogenstannanen $(tBu)_2SnCl_2$, $(nBu)_2SnCl_2$, $(C_6H_3)_2SnCl_2$ bzw. $nBuSnCl_3$ im Molverhältnis 1:1 findet eine [4 + 1]-Cyclokondensationsreaktion statt, bei der die Stannatetraphospholane $(tBuP)_4SnR_2$ 3b - 3d bzw. $(tBuP)_4Sn(Cl)nBu$ 3e mit dem binären Fünfringgerüst P₄Sn gebildet werden. Von **3b** wurde eine Einkristallstrukturanalyse durchgeführt; das Fünfringgerüst zeigt eine planare Konformation. Die Verbindungen **3b** – **3e** wurden Massenund NMR-spektroskopisch charakterisiert; **3b** – **3d** liefern im ³¹P{¹H}-NMR-Spektrum ein AA'MM'- (AA'MM'X)-, **3e** dagegen ein ABCD- (ABCDX)-Spinsystem.

Synthesis of the Stannatetraphospholanes $(tBuP)_4SnR_2$ (R = tBu, nBu, C₆H₅) and $(tBuP)_4Sn(Cl)nBu$ Molecular and Crustel Structure of $(tBuP)_5Sn(tBu)$

Molecular and Crystal Structure of (tBuP)₄Sn(tBu)₂

Abstract. The reaction of the diphosphide $K_2[tBuP-(tBuP)_2-PtBu]$ 4 with the halogenostannanes $(tBu)_2SnCl_2$, $(nBu)_2SnCl_2$, $(C_6H_3)_2SnCl_2$ or $nBuSnCl_3$ in a molar ratio of 1:1 leads via a [4 + 1]-cyclocondensation reaction to the stannatetraphospholanes $(tBuP)_4SnR_2$ 3b-3d and $(tBuP)_4Sn(Cl)nBu$ 3e, respectively, with the binary 5-membered P₄Sn ring system. 3b was characterized by a single crystal structure analysis; the 5-membered ring exists in a planar conformation. The com-

Einleitung

Vor kurzem berichteten wir über Synthesen und Strukturbestimmungen der binären Heterocyclopolyphosphane $(tBuP)_4BN(iPr)_2$ 1 [1], $(tBuP)_4SiCl_2$ 2 [2] und $(tBuP)_4$ -SnMe₂ 3a [3]. Wichtigstes Merkmal von 1, 2 und 3a ist das chirale fünfgliedrige Ringsystem P₄X (X = B, Si, Sn) in der *envelope*-Konformation; dabei fällt auf, daß in 1 und 2 ein P-Atom deutlich aus der Ebene der übrigen Ringatome herausgerückt ist. Im Gegensatz dazu findet man für 3a [3] und auch für P₄C-Fünfringe [4] mit *envelope*-Konformation immer das Heteroatom aus der Ringebene herausgerückt. In allen drei Molekülen (1, 2, 3a) sind die *tert*-Butylgruppen an benachbarten Phosphoratomen *trans*-ständig angeordnet. Da im Falle von 2 bzw. 3a das Heteroatom jeweils zwei gleiche geminale Substipounds 3b - 3e were identified by NMR and also by mass spectroscopy; the ³¹P{¹H}-NMR spectra of 3b - 3d showed an AA'MM' (AA'MM'X), 3e on the other hand an ABCD (ABCDX) spin system.

Keywords: Phosphorus tin heterocycles; syntheses; crystal structure; NMR

tuenten trägt, kann die Konformation nicht mit einer Minimierung der Ringspannung erklärt werden; vielmehr sind Packungseffekte im Feststoff als ausschlaggebend anzusehen.

Weiterführende Untersuchungen an derartigen Ringsystemen ergaben inzwischen, daß auch die planare Konformation existiert, über die im folgenden berichtet werden soll.

Darstellung von (tBuP)₄Sn(tBu)₂ (3b)

Der Heterocyclus **3b** wurde analog zur Darstellung von **3a** [3] durch eine [4 + 1]-Cyclokondensation von 1,4-Dikalium-1,2,3,4-tetra-*t*-butyl-tetraphosphid **4** [5] mit (*t*Bu)₂SnCl₂ synthetisiert, Gl. (1).

$$K_{2}[tBuP-(tBuP)_{2}-PtBu] + (tBu)_{2}SnCl_{2} \rightarrow (tBuP)_{4}Sn(tBu)_{2} + 2KCl$$

$$4 \qquad 3b \qquad (1)$$

Die Umsetzung wird in Hexan bei $-78 \,^{\circ}$ C unter langsamem Erwärmen auf Raumtemperatur durchgeführt. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung zeigt ein AA'MM'-Spinsystem mit Zinnsatelliten, das von **3b** herrührt; für δ^{119} Sn wurde ein Wert von +226,7 ppm gefunden (siehe NMR-Teil). Im ³¹P{¹H}-NMR-Spektrum sind außerdem noch die Signale von (tBuP)_n (n = 3, 4) sowie Spuren von H(tBu)P-(tBuP)₂-P(t-Bu)H zu erkennen. Die Entstehung der Cyclophosphane ist auf eine Redoxreaktion zurückzuführen [1]; das offenkettige Tetraphosphan entsteht wahrscheinlich durch Hydrolyse von **4**. Die Nebenprodukte machen insgesamt ca. 10% aus. Nach dem Einengen der Reaktionslösung kann **3b** in kristalliner Form erhalten werden.

In analoger Weise wurden außerdem die am Zinnatom zweifach Alkyl- bzw. Aryl-substituierten Derivate **3c** und **3d** sowie das gemischt substituierte Halogen-Alkyl-Derivat **3e** dargestellt und NMR- und Massen-spektroskopisch charakterisiert. Der analoge Fünfring (*t*BuP)₄-Sn(Cl)CH₃ konnte nicht als einheitliches Produkt isoliert werden. Das ³¹P{¹H}-NMR-Spektrum der Reaktionslösung von **4** mit CH₃SnCl₃ enthält jedoch denselben Linienhabitus wie jenes von **3e** (δ^{31} P (ppm): 34,1; 19,6; 4,6; -15,2; siehe NMR-Teil).

Kristall- und Molekülstruktur von (tBuP)₄Sn(tBu)₂ (3b)

Von der Verbindung 3b konnten durch Kristallisation aus *n*-Hexan geeignete Einkristalle erhalten werden, von denen einer ausgewählt, unter Nujol präpariert und in eine Glaskapillare eingeschmolzen wurde. Meßparameter und kristallographische Daten sind in Tabelle 1 aufgelistet, Lageparameter und Parameter der isotropen Temperaturfaktoren finden sich in Tabelle 2, ausgewählte Bindungslängen und Bindungswinkel in Tabelle 3. Abbildung 1 zeigt die Molekülstruktur von 3b sowie das Numerierungsschema. Tabelle 1Kristalldaten und Angaben zu der Kristallstruktur-
bestimmung von 3b [11]

	3b
Summenformel	$C_{24}H_{54}P_4Sn$
Formelmasse g/mol	585,2
Kristallabmessungen (mm)	0,35×0,25×0,15
Kristallsystem	orthorhombisch
Raumgruppe	Pna2 ₁
Gitterkonstanten (pm)	a = 986,6(2); b = 1679,5(3); c = 1878,2(3)
Zellvolumen V (pm ³)	3112,0(14)×10 ⁶
Zahl der Formeleinheiten	Z = 4
pro Zelle	
Dichte (berechnet) g/cm ³	1,249
Meßgerät	Vierkreisdiffraktometer
C	Siemens P4
Strahlung	MoK α (Graphitmono-
C C	chromator)
Meßtemperatur	-100 °C
Zahl der Reflexe zur Gitter-	49 (20° $\leq 2\theta \leq 25^{\circ}$)
konstantenberechnung	
Meßbereich, Abtastmodus	$3^\circ \le 2\theta \le 58^\circ \omega$ -scans
gemessener Bereich des	$0 \le h \le 13; 0 \le k \le 22;$
reziproken Raumes	$0 \le 1 \le 25$
Zahl der gemessenen Reflexe	5297
Zahl der unabhängigen Reflexe	4501
Zahl der beobachteten Reflexe	2845
$(F > 4\sigma (F))$	
F(000)	1232
Absorptionskoeffizient $\mu(MoK\alpha)$	1,036
(mm ⁻¹)	
Korrekturen	Lorentz- und Polarisations-
	laktor direkto Mathada
Strukturaufklarung	Mathada dan blainstan
verfeinerung	Niethode der Kleinsten
	Fenierquadratsumme (volle
	Matrix, 261 variable Para-
	meter); Nichtwasserstoff-
	atome anisotrop; H-Atome
	berechnet unter vorgabe
	idealer Geometrie und
	CH-Bindungslängen von
	96 pm (fiding model); U _{iso}
	Further Strift, EV
	Funktion $2w(F_0 - F_c)^2$
Atomformfaktoren	Int. Tables for A-Ray
	Crystallography; vol. 1v
	Kynoch Press; Birmingham,
	Engl. 19/4
$\mathbf{R}_{1} = 2(\mathbf{F}_{0} - \mathbf{F}_{c})/2 \mathbf{F}_{0} $	0,058
$\mathbf{K}_{2} = \{ 2\mathbf{W}(\mathbf{F}_{0} - \mathbf{F}_{c})^{2} / 2\mathbf{W}(\mathbf{F}_{0})^{2} \}^{1/2}$	0,00
GOOF	0,99
Max./min. Differenzelektronen-	1,10/-1,1
dichte $[e \times 10^{-6} \text{ pm}^{-3}]$	
D	CUELVEL DC: Comer-
Programmsystem	SHELXTL PC; Siemens
Programmsystem	SHELXTL PC; Siemens Analytical X-Ray Instru-

Abb. 1 Darstellung der Molekülstruktur von 3b

Tabelle 2 Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope Auslenkungsparameter (pm²) von 3 b

	x	у	Z	U(eq)*
Sn	935(1)	9636(1)	1646(1)	252(2)
P(1)	1568(3)	11091(2)	1469(1)	252(8)
P(2)	1691(3)	9010(2)	483(2)	289(9)
P(3)	2545(4)	11137(2)	416(2)	287(9)
P(4)	2330(3)	10010(2)	- 198(2)	283(8)
C(5)	2006(15)	8815(8)	2410(8)	406(43)
C(51)	3461(18)	8734(12)	2230(10)	910(81)
C(52)	1822(22)	9083(12)	3174(8)	749(76)
C(53)	1359(21)	8029(9)	2281(11)	973(88)
C(6)	-1234(11)	9812(8)	1975(7)	344(39)
C(61)	- 1929(12)	10368(9)	1455(7)	533(48)
C(62)	-1149(15)	10264(11)	2678(9)	643(62)
C(63)	-2020(17)	9053(10)	2069(12)	883(79)
C(1)	2939(13)	11451(8)	2107(7)	374(39)
C(11)	4315(14)	11031(10)	2028(10)	660(59)
C(12)	3179(14)	12330(8)	1937(8)	557(52)
C(13)	2406(22)	11378(10)	2854(8)	648(70)
C(2)	156(13)	8566(8)	- 18(7)	395(41)
C(21)	763(15)	8171(9)	-693(7)	483(48)
C(22)	- 383(19)	7924(10)	473(10)	771(67)
C(23)	- 888(14)	9155(10)	-232(9)	613(57)
C(3)	1324(15)	11784(8)	- 88(7)	451(46)
C(31)	- 101(14)	11471(9)	-133(8)	524(51)
C(32)	1319(16)	12607(7)	271(8)	530(54)
C(33)	1874(19)	11896(9)	-851(7)	576(58)
C(4)	4194(13)	9768(8)	- 364(7)	398(40)
C(41)	4233(14)	8977(9)	- 769(8)	471(47)
C(42)	5004(14)	9652(11)	318(9)	639(59)
C(43)	4758(18)	10427(10)	- 825(10)	685(63)

*)	äquivalente	e isc	otrope	U	berechnet	als	ein	Drittel	der	Spur	des
or	thogonalen	U_{ij}	Tenso	rs							

In Übereinstimmung mit den NMR-Befunden liegt auch im Feststoff eine all-trans-Konfiguration der tert-Butylgruppen an den Phosphoratomen vor. Wichtigstes Merkmal von $(tBuP)_4Sn(tBu)_2$ (3b) ist das nahezu planare P₄Sn-Ringsystem. Die Abweichungen (in pm) der fünf Atome aus dieser Ausgleichsebene betragen Sn (-2,1); P1 (-4,8); P2 (8,4); P3 (11,0); P4 (-12,6). Jede der beiden tert-Butylgruppen am Sn-Atom steht in cis-Position zu einer tert-Butylgruppe an dem P1- bzw. P2-Atom, so daß im Gegensatz zu 3a eine envelope-Konformation wegen der Sperrigkeit dieser Gruppen erst gar nicht möglich ist. In 3b sind es die großvolumigen tert-Butylgruppen, die die nahezu planare Konformation bedingen, während die beobachtete Abwinkelung in 2 bzw. 3a auf Packungseffekte im Feststoff zurückzuführen ist. Die Atomabstände d_{Sn-P} und d_{P-P} sind in **3a** und **3b** nahezu identisch und stellen typische Werte für Einfachbindungen dar; die P—Sn—P-Öffnungswinkel sind ebenfalls nahezu identisch (102,2° 3a, 102,3° 3b).

 Tabelle 3
 Ausgewählte Bindungslängen (pm) und -winkel (°)

 von 3b

254,5(3)	Sn—P(2)	253,6(3)
225,2(14)	Sn—C(6)	224,8(11)
220,1(4)	P(1) - C(1)	190,6(13)
220,2(5)	P(2)C(2)	193,3(14)
222,7(5)	P(3)—C(3)	187,8(15)
190,8(13)		
102,3(1)	P(1)SnC(5)	123,8(4)
99,1(4)	P(1) - Sn - C(6)	98,2(3)
124,8(3)	C(5) - Sn - C(6)	110,6(5)
105,0(1)	Sn-P(1)-C(1)	113,3(4)
104,1(4)	Sn-P(2)-P(4)	105,6(1)
110,4(4)	P(4) - P(2) - C(2)	103,7(4)
113,2(2)	P(1) - P(3) - C(3)	101,1(5)
99,8(5)	P(2) - P(4) - P(3)	112,0(2)
102,1(4)	P(3) - P(4) - C(4)	100,0(4)
111,5(11)	Sn—C(5)—C(52)	111,4(10)
103,8(11)	Sn—C(6)—C(61)	109,6(8)
104,5(8)	Sn—C(6)—C(63)	114,3(9)
11 4,9(10)	P(1)-C(1)-C(12)	106,5(9)
108,2(11)	P(2)-C(2)-C(21)	105,1(9)
104,7(10)	P(2)C(2)C(23)	114,7(10)
115,2(10)	P(3)—C(3)—C(32)	107,5(9)
108,2(10)	P(4)—C(4)—C(41)	106,8(9)
113,3(9)	P(4)—C(4)—C(43)	107,1(10)
	254,5(3) 225,2(14) 220,1(4) 220,2(5) 222,7(5) 190,8(13) 102,3(1) 99,1(4) 124,8(3) 105,0(1) 104,1(4) 110,4(4) 113,2(2) 99,8(5) 102,1(4) 111,5(11) 103,8(11) 104,5(8) 114,9(10) 108,2(11) 108,2(10) 113,3(9)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Mittelwerte Bindungslängen (pm) C--C 151,6 (148,1(23)-155,1(19))

Mittelwerte Bindungswinkel (°) C--C--C 109,6 (106,0(11) - 113,3(12))

NMR-Spektren von 3b-3e

Die ³¹P- und ¹¹⁹Sn-NMR-Daten der fünfgliedrigen Phosphor-Zinn-Heterocyclen 3b-3d sind in Tabelle 4, iene von 3e in Tabelle 5 zusammengestellt. Die ${}^{31}P{}^{1}H{}$ -NMR-Spektren der drei erstgenannten Verbindungen zeigen AA'MM'-Spinsysteme, deren aus 10 Linien bestehende Halbspektren mit Hilfe ihrer 117Sn- bzw. 119Sn-Satelliten eindeutig den Phosphoratomen PA, PA, und P_M, P_{M'} zugeordnet werden können (Kennzeichnung der Atome siehe Tabelle 4). Die chemischen Verschiebungen $\delta^{31}P_A$ und $\delta^{31}P_M$ von 3c und 3d sowie vom analogen dimethylsubstituierten P_4 Sn-Heterocyclus **3a** (-16.0; +40,9 ppm [3]) differieren nur geringfügig (<1,3 bzw. 5,6 ppm). Beim Ringsystem 3b ist dagegen insbesondere das Phosphoratom P_A wegen der sperrigen t-Butylsubstituenten am Zinnatom um etwa 12 ppm entschirmt (vgl. [3]), während die Lage des Schwerpunktes der beiden Halbspektren mit der früher von Baudler et al. gefundenen übereinstimmt (+18,8 ppm; [6]). Die ¹J(PP)-Beträge von 3b - 3d sind für die *trans*-Stellung der *t*-Butylgruppen benachbarter Phosphoratome in P₄Sn-Ringen charakteristisch (all-*trans*-Konfiguration) [3]. In den 119 Sn{¹H}-NMR-Spektren von **3b**-**3d** findet man Tripletts von Tripletts, die als X-Teile von AA'MM'X-Spinsystemen nach 1. Ordnung ausgewertet werden können

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$R = tBu$ nBu C_6H_5	3b 3c 3d

Tabelle 4 ³¹P{¹H}- und ¹¹⁹Sn{¹H}-NMR-Daten der Phosphor-Zinn-Heterocyclen 3b - 3d in C₆D₆ bei 300 K (Konzentration ca. 4 Gew.-%)

		$\delta/{ m ppm}$					$^{n}J/Hz; n =$	1, 2	
		3 b	3 c	3 d			3 b	3 c	3 d
¹ P	Р _А Рм	+3,05 +36.05	14,69 + 43,37	-15,00 +37.76	n = 1	P _A P _M P _M P _M	- 333,5 - 343,4	-327,2 -338,1	-328,6 -336,1
		· · · ·	· · · ·	· · · · · ·		¹¹⁹ SnP _A	1169,2	950,5	967,0
¹⁹ Sn		+226,7	+212,6	+156,6	n = 2	$P_{A}P_{M'}$	-15,5	-14,4	-14,8
						$P_A P_{A'}$	-42,5 91,6	-35,3 61,7	-37,7 70,6

(vgl. l.c. [7, 8]). Der ${}^{1}J({}^{119}SnP_A)$ -Betrag von **3b** übersteigt die entsprechenden von **3a** und **3c**-**3e** um mehr als 200 Hz; dieser Befund wird auf die großvolumigen *t*-Butylsubstituenten zurückgeführt [9].

Tabelle 5 ${}^{31}P{}^{1}H{}^{-}$ und ${}^{19}Sn{}^{1}H{}^{-}NMR-Daten des Phosphor-$ Zinn-Heterocyclus 3e in C₆D₆ bei 295 K (Konzentration ca. 4 Gew.-%)

3 e	
-----	--

		δ /ppm		ⁿ J/Hz; n	= 1, 2
³¹ P	P _A P _B P _C P _D	-18,17 34,93 19,76 10,23	n = 1:	P_AP_B P_BP_C P_CP_D ¹¹⁹ SnP _A ¹¹⁷ SnP _A	- 341,6 - 340,7 - 323,9 + 1280,8 + 1224,2
¹¹⁹ Sn	Sn _x	+296,9		119 SnP _D 117 SnP _D	+1133,0 +1082,2
			n = 2:	$P_{A}P_{C}$ $P_{A}P_{D}$ $P_{B}P_{D}$ $P_{B}Sn^{\beta}$ $P_{C}Sn$	- 11,5 - 40,7 - 11,0 + 60,5 + 45,6

 α : ¹J(¹¹⁷SnP) ist jeweils der Spektrensimulation entnommen β : ^{117,119}Sn-Satelliten nicht aufgelöst

Im ³¹P{¹H}-NMR-Spektrum des Fünfrings 3e erkennt man ein ABCD-Spinsystem, dessen Linien von ¹¹⁷Snbzw. ¹¹⁹Sn-Satelliten flankiert sind, die ihrerseits zwei ABCD-Teile von ABCDX-Spektren bilden. Die zum Sn-Atom α - bzw. β -ständigen Phosphoratome können durch die unterschiedlichen ^{1,2}J(PSn)-Beträge unterschieden werden. $\delta^{31}P_A$ und $\delta^{31}P_B$ liegen im Bereich der entsprechenden Werte von 3a und 3b-3d, während P_{C} und P_{D} deutlich tieffeldverschoben sind (um 15.2 bzw. 28.4 ppm; Bezeichnung der Atome siehe Tabelle 5). Bei 3e wird wie bei dem fünfgliedrigen Heterocyclus (tBuP)₄Si(Cl)-SiCl₃ belegt [2] – von den beiden zum Zinnatom α ständigen Phosphoratomen jenem die Lage bei tieferem Feld zugeordnet, dessen freies Elektronenpaar zum Chloratom cis-ständig ist (P_D). Abbildung 2 zeigt den Spektrenausschnitt des Phosphoratoms P_D mit den zugehörigen Satellitensignalen der [mono-117Sn]- und [mono-¹¹⁹Sn]-Isotopomeren von **3e**, deren ³¹ P_D -Teilspektren simuliert und anschließend addiert wurden. Aus der Spektrensimulation folgen die relativen Vorzeichen der ¹Jund ²J-Kopplungskonstanten; die geminale P_BSn- und P_cSn-Kopplungskonstanten ergaben sich wie bei 3a positiv [3]. Sn-Isotopeneffekte auf die chemische Verschiebung δ^{31} P konnten nicht nachgewiesen werden.

Das ¹¹⁹Sn{¹H}-NMR-Spektrum von **3e** besteht aus einem Triplett von Tripletts, das im Gegensatz zu den ¹¹⁹Sn{¹H}-NMR-Spektren von **3b**-**3d** nur scheinbar von 1. Ordnung ist (siehe Abbildung 2); die Linienbreiten von 25 Hz dürften überwiegend durch Quadrupolrelexationseffekte bedingt sein [10]. Der insbesondere mit den beiden um 14,6 Hz voneinander verschiedenen Kopplungskonstanten ²J(P_BSn) und ²J(P_CSn), die über die Zinnsatelliten in den ³¹P{¹H}-NMR-Teilspektren der Phosphoratome P_B und P_C von **3e** erhalten wurden, simulierte ¹¹⁹Sn-X-Teil des ABCDX-Spinsytems besteht aus 16 we-

Abb. 2 161,977 MHz ³¹P{¹H}-NMR-Teilspektrum des Phosphoratoms P_D von **3e** in C₆D₆ bei 295 K mit ¹¹⁷Sn- und ¹¹⁹Sn-Satelliten (oben). Aufspaltungsmuster der Tieffeld- und Hochfeld-Zinnsatelliten von P_D und Ergebnis der Addition der beiden für das [mono-¹¹⁷Sn]- und das [mono-¹¹⁹Sn]-Isotopomere durchgeführten Simulationen (unten; digitale Auflösung: 0,15 Hz pro Punkt)

Abb. 3 149,213 MHz-¹¹⁹Sn{¹H}-NMR-Spektrum von 3e in C_6D_6 bei 295 K und simuliertes Spektrum (scheinbar Spektrum 1. Ordnung, siehe Text)

nigstens 1 Hz auseinanderliegenden annähernd gleich intensiven Signalen (sowie zwei intensitätsarmen Kombinationspeaks), die bei Linienverbreiterung (10 Hz) mit dem gemessenen Spektrum übereinstimmen (siehe Abbildung 3 und Tabelle 5). Dem ¹¹⁹Sn{¹H}-NMR-Spektrum von **3e** dürfen also keinerlei Kopplungskonstanten direkt entnommen werden.

Experimenteller Teil

Die NMR-Spektren wurden mit den Spektrometern AC 250 und AM 400 ('H: 250,133 MHz und 400,134 MHz) der Firma Bruker Analytische Meßtechnik GmbH, Rheinstetten, aufgenommen. Die chemischen Verschiebungen δ^{31} P beziehen sich auf 85% ige wäßrige Orthophosphorsäure als äußeren Standard, δ^{119} Sn auf Tetramethylzinn, jeweils unter Berücksichtigung der üblichen Vorzeichenkonvention. Die Spektrensimulationen wurden mit Hilfe des PANIC-Programmes (Bruker Software) auf einem Bruker-Aspekt 3000 Rechner durchgeführt. Für die Aufnahme der Massenspektren stand ein Massenspektrometer MAT 711 der Firma Varian zur Verfügung.

 $(tBuP)_4Sn(tBu)_2$ (3 b). 0,35 g (0,7 mmol) K₂[$tBuP-(tBuP)_2$ -PtBu] · THF 4 werden bei RT in 20 ml *n*-Hexan suspendiert. Man kühlt auf - 78 °C und gibt unter kräftigem Rühren 0,21 g (0,69 mmol) (tBu)₂SnCl₂ zu. Dann läßt man die Reaktionslösung unter Rühren innerhalb von 15 h auf RT erwärmen. Anschließend wird über eine G4-Fritte vom Niederschlag (KCl) abfiltriert; man wäscht noch zweimal mit je 10 ml *n*-Hexan und entfernt das Lösungsmittel im Vakuum. Zurück bleibt ein gelbes Öl, aus dem **3b** nach Auflösen in 2 ml *n*-Hexan bei -20 °C in Form blaßgelber Kristalle erhalten wird, Fp. 162 °C. Ausbeute: 0,19 g (46%).

 $C_{24}H_{54}P_4Sn$ (585,3); C 49,37 (ber. 49,25); H 8,92 (9,30)%. MS: m/z(%) = 581 - 590(1) [M⁺].

 $(tBuP)_4Sn(nBu)_2$ (3c). Die Darstellung von 3c aus 4 und $(nBu)_2SnCl_2$ erfolgt analog 3b. Ausbeute: 0,47 g (70%), blaßgelbe Kristalle.

C₂₄H₅₄P₄Sn (585,3); C 49,44 (ber. 49,25); H 9,08 (9,30)%.

(*t*BuP)₄Sn(C₆H₅)₂ (3d). Die Darstellung von 3d aus 4 und $(C_6H_5)_2$ SnCl₂ erfolgt analog 3b. Ausbeute: 0,61 g (65%), farblose Kristalle.

 $C_{28}H_{46}P_4Sn$ (625,3); C 54,01 (ber. 53,79); H 7,18 (7,41)%.

(tBuP)₄Sn(Cl)*n*Bu (3e). 1,09 g (2,17 mmol) $K_2[tBuP-(tBuP)_2-PtBu]$ · THF 4 werden bei RT in 40 ml *n*-Hexan suspendiert. Man kühlt auf $-78 \,^{\circ}$ C und tropft unter kräftigem Rühren 0,61 g (2,17 mmol) *n*BuSnCl₃ zu. Man läßt die Reaktionslösung unter Rühren innerhalb von 15 h auf RT erwärmen. Danach filtriert man über eine G4-Fritte vom Niederschlag (KCl) ab, wäscht noch zweimal mit je 10 ml *n*-Hexan und entfernt das Lösungsmittel im Vakuum. Als Rückstand verbleibt ein gelbes Öl, welches noch erhebliche Anteile an $(tBuP)_n$ (n = 3, 4) enthält. Durch Kristallisation aus *n*-Hexan lassen sich letztere nahezu vollständig entfernen; **3e** verbleibt als gelbes Öl. Ausbeute: 0,54 g (44%).

 $C_{20}H_{45}P_4SnCl$ (564,1) MS: m/z(%) = 510,1-518,1(1) [M-CH₃Cl]⁺.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert.

Literatur

- B. Riegel, A. Pfitzner, G. Heckmann, H. Binder, E. Fluck, Z. anorg. allg. Chem. 620 (1994) 8
- [2] B. Riegel, A. Pfitzner, G. Heckmann, H. Binder, E. Fluck, Z. anorg. allg. Chem. 621 (1995) 1989
- [3] D. Bongert, G. Heckmann, W. Schwarz, H.-D. Hausen, H. Binder, Z. anorg. allg. Chem. 621 (1995) 1358
- [4] M. Baudler, E. Tolls, E. Clef, B. Kloth, D. Koch, Z. anorg. allg. Chem. 435 (1977) 21
- [5] K. Issleib, M. Hoffmann, Chem. Ber. 99 (1966) 1320
- [6] M. Baudler, H. Suchomel, Z. anorg. allg. Chem. 505 (1983) 39
- [7] E. Fluck, B. Neumüller, R. Braun, G. Heckmann, A. Simon, H. Borrmann, Z. anorg. allg. Chem. 567 (1988) 23
- W. Plass, G. Heckmann, E. Fluck, C. Krüger, S. Werner, Z. Naturforsch. 45 b (1990) 1487
- [9] J. Hahn, M. Baudler, C. Krüger, Yi-Hung Tsay, Z. Naturforsch. 37b (1982) 797
- [10] B. Wrackmeyer, Ann. Reports NMR Spectrosc. 16 (1985) 137
- [11] Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-59226, der Autorennamen und des Zeitschriftenzitats angefordert werden

Anschr. d. Verf.:

Prof. Dr. H. Binder, Dipl.-Chem. D. Bongert, Dr. G. Heckmann, Dr. W. Schwarz, Dr. H.-D. Hausen Institut für Anorganische Chemie der Universität Pfaffenwaldring 55 D-70569 Stuttgart Telefax: Int. +49/7116854241