J. Chem. Soc. (A), 1970

Multihydrido-complexes of Osmium and Related Complexes

By P. G. Douglas and B. L. Shaw,*† School of Chemistry, The University, Leeds 2

A new route to tetrachloro-complexes of the type trans- $[OsCl_4L_2]$ from mer- $[OsCl_3L_3]$ (L = tertiary phosphine or tertiary arsine) is described, which involves treatment with chlorine in the presence of light. The tetrachloroosmium(III) complex trans-[OsCl4(PMe2Ph)2] reacts with tertiary phosphines, tertiary arsines, alkyl phosphites, or alkyl phosphonites (\equiv L') to give [OsCl₃(PMe₂Ph)₂L']. Reduction of *mer*-[OsCl₃L₃] or [OsCl₃(PMe₂Ph)₂L'] with either sodium borohydride or lithium aluminium hydride gives tetrahydrido-osmium complexes of types [OsH $_4L_3$] or $[OsH_4(PMe_2Ph)_2L']$. Similar reduction of *trans*- $[OsCI_4(PMe_2Ph)_2]$ gives a mixture of $[OsH_6(PMe_2Ph)_2]$ and $[OsCI_4(PMe_2Ph)_2]^-$. The tetrahydrides of type $[OsH_4L_3]$ react with hydrogen chloride to give *fac*- $[OsCI_3L_3]$. The tetrahydrides also react slowly with EtOD in benzene to give the corresponding tetradeuterides. The hydrogendeuterium exchange is catalysed by strong acids and is completely inhibited by a strong base such as tetrabutylammonium hydroxide. In benzene solution the high-field resonance (hydride) splittings due to coupling with phosphorus nuclei collapse immediately to a singlet resonance on adding CF₃·CO₂H, because of rapid exchange. Conductimetric titration shows that in the presence of a strong acid $[OsH_4L_3]$ is converted into $[OsH_5L_3]^+$. I.r. and n.m.r. data are given and discussed.

SEVERAL multihydrido-complexes of rhenium containing tertiary phosphines or tertiary arsines as ligands are known. The main ones are of type [ReH₅L₃] and $[\text{ReH}_7\text{L}_2]$ (L = tertiary phosphine or tertiary arsine).¹⁻⁴ For this paper a multihydrido-complex is defined as

one where more than three hydrogen ligands are bonded to a metal atom. Until recently rhenium was unique in forming such multihydrido-species but we have described the complex [WH₆(PMe₂Ph)₃].⁵ We now show that osmium also forms similar multihydrido-complexes.6

- J. Chatt and R. S. Coffey, Chem. Comm., 1966, 545.
 L. Malatesta, M. Freni, and V. Valenti, Gazzetta, 1964, 94,
- ¹ L. Inductor, 11
 ¹ J. R. Moss and B. L. Shaw, Chem. Comm., 1968, 632.
 ⁶ P. G. Douglas and B. L. Shaw, Chem. Comm., 1969, 624.

[†] No reprints available.

¹ A. P. Ginsberg, Transition Metal Chem., 1965, 1, 111.

² M. L. H. Green and D. J. Jones, Adv. Inorg. Chem. Radiochem., 1965, 7, 115.

Others have recently described some tetrahydridocomplexes of osmium of this type.⁷

Some new chloro-complexes of osmium were required and we describe these first. Compounds of the type mer- $[OsCl_3L_3]$ (L = tertiary phosphine or tertiary arsine) were prepared as described previously,^{8,9} only the compound with $L = AsEt_2Ph$ is new (Table 1). Compounds

TABLE	1
-------	---

Some new tertiary phosphine and tertiary arsine complexes

				Analyses (%)			
Complex	Colour	Yield (%)	С	H or $H + D$	Cl	M.p.	M ª
$mer-[OsCl_3(AsEt_2Ph)_8]$	Red	60	39.0(38.85)	4·95(4·9)	11.3(11.5)	185—194° ª	
trans-[OsCl ₄ (PEt ₂ Ph) ₂]	Brown	85	36.6(36.15)	4.6(4.55)	20.9(21.35)	179-181	_
trans-[OsCl ₄ (AsEt ₂ Ph) ₂]	Brown	55	31.75(31.95)	4.05(4.0)	19-1(18-85)	163 - 165	_
$[OsCl_{a}(PMe_{2}Ph)_{2}(PEt_{2}Ph)]$	Red	67	$42 \cdot 4(42 \cdot 25)$	$5 \cdot 1(5 \cdot 05)$	14.95(14.4)	186—193 ª	709(739)
$[OsCl_3(PMe_2Ph)_2(PPh_3)]$	Orange	56	49.1(48.9)	4.45(4.45)	12.5(12.75)	179—182 d	720(835)
$[OsCl_3(PMe_2Ph)_2(Ph_2PCH_2)_2]$	Orange	31	52.3(51.95)	5.15(4.8)	11.6(10.95)	140 ^d	<u> </u>
$[OsCl_3(PMe_2Ph)_2(AsMe_2Ph)]$	Red	45	$38 \cdot 4(38 \cdot 2)$	4.55(4.4)	14.3(14.1)	182—187 ď	705(755)
$[OsCl_{2}(PMe_{Ph})_{2}\{P(OMe)_{Ph}\}]$	Red	65	38.6(38.75)	4.3(4.5)	14.5(14.35)	178—186 ª	
$[OsCl_{o}(PMe_{Ph})_{o}[P(OEt)_{o}]]$	Red	45	35.8(35.75)	$5 \cdot 25(5 \cdot 05)$	14.5(14.4)	198—204 ª	
$[OsH_{A}(PMe_{P}h)_{3}]$	White	50	47 •5(47 •35)	$6 \cdot 2(6 \cdot 15)$		8080-5	572(608) ^p
$[OsH_{4}(PMe_{9}Ph)_{3}]$	White	66	52.15(52.0)	7.2(7.15)		79—80	661(692) ^ø
$[OsH_4(PMe_2Ph)_2(PEt_2Ph)]$	White	67	48.4(49.05)	6.55(6.5)		92—93	647(637) ^b
$[OsH_4(PMe_2Ph)_2(AsMe_2Ph)]$	White	41	55.35(55.57)	5.7(5.64)		135—138 ª	
[OsH,(PMe,Ph),(AsMe,Ph)]	White	65	44·5(44·2)	5.85(5.7)		5759	624(652) ^b
trans-[OsCl4(PMe2Ph)2][AsPh4]	Yellow	39	48 ·2(48 ·45)	4.4(4.25)	13·75(1 4 ·3)	200—204 ª	_
trans-[OsCl ₄ (PEt ₂ Ph) ₂][AsPh ₄]	Yellow	84	50.35(50.5)	4.95(4.8)	$13 \cdot 15(13 \cdot 55)$	198 - 202	
$fac-[OsCl_3(PMe_2Ph)_3]$	Carmine	25	40·45(40·5)	5.05(4.60)	15.05(15.00)	197 - 201	
fac-[OsCl ₂ (PEt ₂ Ph) ₂]	Pink	49	$45 \cdot 6(45 \cdot 25)$	6.0(5.85)	13.65(13.35)	171-174	757(796)
fac-[OsCl ₃ (AsEt ₂ Ph) ₃]	Orange	13	39.3(38.85)	$5 \cdot 1(5 \cdot 0)$	11.65(11.45)	173 - 177	
$[OsD_{4}(PMe_{9}Ph)_{9}]$	White	50	47.2(47.05)	2.801(2.755)		$82 - 82 \cdot 5$	
$[OsD_4(PEt_2Ph)_3]$	White	74	51.55(51.7)	3·154(3·172)		7677	
$fac-[OsCl_3(AsMe_2Ph)_3]$	Yellow	21	34·3(34·2)	4.35(4.05)	$12 \cdot 35 (12 \cdot 65)$	195—197 ^d	837(843) •
	· · · · · · · · · · · · · · · · · · ·	(tester and the start	+ le	(may) of DO	I TT O to meth	

Required values in parentheses. Analyses for H + D are quoted as the weight (mg.) of $D_2O + H_2O$ together with the calculated weight in parentheses. ^b In benzene solution. ^c In chloroform solution. ^d With decomposition.

of the type $[OsCl_4L_2]$ have been prepared by the prolonged action of carbon tetrachloride on the compounds $[OsCl_3L_3]$ ⁷ but in our hands this method gives very poor yields. However, we find that these trichloro-compounds when treated with chlorine in a mixture of dichloromethane and carbon tetrachloride in the presence of light from a fluorescent lamp, readily give the required tetrachloro-complexes. Two new complexes $[OsCl_4L_2]$ with $L = PEt_2Ph$ or $AsEt_2Ph$ are described. These tetrachloro-complexes have the trans-configuration.10

We find that the complex trans-[OsCl₄(PMe₂Ph)₂] reacts with ligands L (2.5 mol.) in benzene to give trichlorocomplexes of type $[OsCl_3(PMe_2Ph)_2L]$, where L =PMe₂Ph, PEt₂Ph, PPh₃, P(OEt)₃, P(OMe)₂Ph, AsMe₂Ph, or Ph₂P·CH₂·CH₂PPh₂. Under similar conditions to those with which $[OsCl_4(PMe_2Ph)_2]$ reacted with L the complexes $[OsCl_4(PEt_2Ph)_2]$ or $[OsCl_4(AsEt_2Ph)_2]$ did not react and we have been unable to prepare complexes of the type $[OsCl_3L'_2L]$ (L' = PEt₂Ph or AsEt₂Ph). Osmium-chlorine stretching frequencies for the various complexes are in Table 2. Osmium-chlorine stretching frequencies for similar compounds have been reported.¹¹

Complexes of type $[OsCl_3L_3]$ are reduced smoothly by

7 G. J. Leigh, J. J. Levison, and S. D. Robinson, Chem. Comm., 1969, 705.

⁸ J. Chatt, G. J. Leigh, D. M. P. Mingos, and R. J. Paske, J. Chem. Soc. (A), 1968, 2636.

sodium borohydride in ethanol gave a mixture of two products: (1) a benzene-soluble pale yellow oil, identified by its n.m.r. spectrum as [OsH₆(PMe₂Ph)₂] (see below),

TABLE 2

Far-i.r. frequencies $(\pm 2 \text{ cm}^{-1})$ for some osmium complexes

		Other bands
Complex	ν (Os–Cl) ^a	(400-200 cm. ⁻¹)
$mer-[OsCl_{a}(PMe_{2}Ph)_{3}]$	308vs, 266s	346w
$mer-[OsCl_3(PEt_2Ph)_3]$	308vs, 262s	
$mer-[OsCl_3(PBun_3)_3]$	306vs, 256vs	388m
$[OsCl_3(PMe_2Ph)_2(PEt_2Ph)] \dots$	305s, 260s	343m, 317m ^b
$[OsCl_3(PMe_2Ph)_2(PPh_3)]$	308vs, 266m	345w, 275m, ^b
		236w
$[OsCl_3(PMe_2Ph)_2{P(OMe)_2Ph}]$	312vs, 274 s	347w, 354m o
$[OsCl_3(PMe_2Ph)_2(AsMe_2Ph)]$	308vs, 268s	347m, 278w ^b
fac-[OsCl ₃ (PMe ₂ Ph) ₃]	296vs, 254vs	345w, 314w, 243s
$fac-[OsCl_3(PEt_2Ph)_3]$	292vs, 252vs •	379m, 325m
fac-[OsCl ₃ (PBu ⁿ ₃) ₃]	291vs, 262s •	
$fac-[OsCl_3(AsMe_2Ph)_3]$	296s,ª 260s ª	307s, 279s, 246s
fac-[OsCl ₃ (AsEt ₂ Ph) ₃]	294s,ª 264s ª	362w, 338s,
		244m °
trans-[OsCl ₄ (PMe ₂ Ph) ₂][AsPh ₄]	305, 288s	361m, 347m
trans-[OsCl ₄ (PEt ₂ Ph) ₂][AsPh ₄]	298s •	358s, 353s, 345s
a The second onto one second		

^a The assignments are somewhat tentative, since the corresponding bromides or iodides were not made. However, similar assignments have been made for some closely related compounds.¹¹ ^b Shoulder. ^e Broad. ^d Very tentative asasignment.

J. Chatt and B. L. Shaw, Chem. and Ind., 1961, 290.

¹⁰ R. Mason and A. G. Wheeler, unpublished work. ¹¹ J. Chatt, G. J. Leigh, and D. M. P. Mingos, J. Chem. Soc. (A), 1969, 1674.

and (2) a water-soluble product, which on addition of tetraphenylarsonium chloride gave the tetraphenylarsonium salt of trans-tetrachlorobis(dimethylphenylphine)osmate(III). (The water-soluble product was probably therefore the corresponding sodium salt.) An alternative route to the hexahydrido-complex is to treat this salt with lithium aluminium hydride. [AsPh₄]- $[OsCl_4(PEt_2Ph)_2]$ was also prepared by the above method.

The ¹H n.m.r. spectra of the tetrahydrido-complexes of type $[OsH_4L_3]$, where $L = PMe_2Ph$, PEt_2Ph , or PBu_3 , at high field consisted of a 1:3:3:1 quartet showing equivalence of the hydrogens with respect to the phosphines; a similar behaviour is shown by rhenium complex is a well-defined 1:2:1 triplet and integration confirmed the presence of six hydrogens per osmium atom. Therefore, although this compound was only isolated as an oil, there can be little doubt that it has been correctly formulated as $[OsH_6(PMe_2Ph)_2]$.

The tetrahydride [OsH₄(PMe₂Ph)₃] when treated with an excess of hydrogen chloride in methanol gave fac-[OsCl₃(PMe₂Ph)₃] as carmine crystals. Corresponding PEt₂Ph and AsMe₂Ph complexes were also made and shown to be monomeric. The *mer*-isomers $[OsCl_3L_3]$ are well established so that the new compounds are formulated as fac-isomers; their i.r. spectra are virtually identical to those of the corresponding iridium complexes

TABLE 3

N.m.r. and i.r. data (cm.⁻¹ \pm 2 cm.⁻¹) for some osmium hydride complexes.

Complexes of type [O	sH _x L	v]							
		Hydride resor	Hydride resonance Ligand resonances		ν(Os-H) <i>α</i>				
		τ J((PH)				KCI		C_6H_6 solution
$[OsH_4(PMe_2Ph)_3]$					8.3		2051w, 1988m, 18		2033, 1970, 1861, 1806 *
$[OsH_4(PEt_2Ph)_3]$	•••••	19·52q	9•4	P- <i>Et</i>	8.4	6c, 9·15c	2031w, 1982m, 19 1864m, 1817w		2041,ª 1984, 1961,ª 1885, 1802ª
[OsH ₄ (PBu ⁿ ₃) ₃] •		20·39q	9.5	P-Bu	8.4	7c, 9·09c	,		2049,ª 1990, 1883, 1764
[OsH4(AsMe3Ph)3] °	·	19·68s		As-M	le 8.5	3s			2033, 1974, 1833
[OsH ₄ (AsEt ₂ Ph) ₃] •		20·34s		As-Ei	t 7·9	4c, 9·04c			2041, 1986, 1813
$[OsH_6(PMe_2Ph)_2]^{\circ}$	•••••	18.60t	3.5	P-Me	8.3	4i			2028, 1980, 1869
Complexes of type [OsH ₄ (PMe ₅ Ph) ₅ L]									
1 91 5		4 74 3			Resor	nance of			
		Hydride resona	nce	\mathbf{P}	Me ₂ P	h methyls			v(Os-H)
L =	τ	$J(PMe_2Ph-H)$	$J(\mathbf{P_L}-\mathbf{H})$	I)	τ	$J(\mathrm{PH})$ b	'KCI		$C_{6}H_{6}$ solution
PPh ₃ 18	8.48	6.9	13.8	6	3∙ 53 d	7.4	2056w, 1982m, 18	867m	2049, 1986, 1969, ^a 1874, 1802
PEt ₂ Ph 19	9.13	8.1	12.9	8	3∙ 49 d	7.6	2053w, 1984m, 18 1818 a	874m,	2037, 1976, 1871, 1805 ·
P(OEt)3 19	9.22	8.1	14.0	8	3∙81	d			2041, 1946, 1880, 1815*
P(OMe), Ph 18		$9 \cdot 2$	9.2	8	3·36i	7.0			2088, 1992, 1960, ^a 1878
$AsMe_2Ph$ 19		12.6	—	8	3•24t	6.7	2037w, 1962m, 18 1843m	8 62 m,	2041, 1972, 1852, 1813 <i>°</i>

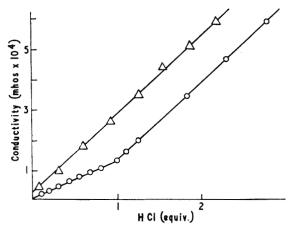
^a Shoulder. ^b Separation of outer peaks, see refs. 12 and 13. ^a Obtained as colourless oils. ^d Partly obscured.

N.m.r. spectra recorded at 60 MHz. and ca. 34° in benzene (J values ± 0.2 Hz., τ -values ± 0.02); s = singlet, d = doublet, t = triplet, i = intermediate pattern, c = complex multiplet

complexes of type [ReH₅L₃].^{3,4} This equivalence may be due to a rapid intramolecular process which makes all the hydrogens apparently couple equally with all the phosphines or might be due to strong phosphorusphosphorus coupling, giving a deceptively simple ¹H n.m.r. pattern (compare the pattern for two mutually trans PMe, Ph ligands).12,13

The two arsine complexes $[OsH_4L_3]$, where L =AsMe₂Ph or AsEt₂Ph, gave high-field singlet resonances (Table 2). The hydrides of type [OsH₄(PMe₂Ph)₂L] gave a doublet of triplets at high field with L = atertiary phosphine or phosphite but one triplet with $L = AsMe_2Ph$ (Table 3). The methyl groups of PMe₂Ph ligands gave complex patterns corresponding to intermediate values of J(P-P).^{12,13}

Integration of the high-field resonance against the resonances due to the organic ligands confirmed the presence of four hydrogen ligands per osmium atom. The high-field resonance pattern of the hexahydridoof type fac-[IrCl₃L₃].^{14,15} Far-i.r. data are in Table 2. fac-[OsCl₃(PBu₂Ph)₃] has recently been reported ¹¹ and gives similar values of v(Os-Cl) to our compounds.


When the complex $[OsH_4(PMe_2Ph)_3]$ was dissolved in an 0.25M solution of EtOD in benzene at 34°, slow hydrogen-deuterium exchange took place giving [OsD₄-(PMe,Ph)₃]. The reaction had a half-life of 12 hr. The exchange was strongly catalysed by trifluoroacetic acid (5 moles %) in the presence of which exchange was complete in less than 10 min. (probably in a few seconds). In the presence of tetrabutylammonium hydroxide, however, exchange was completely inhibited, none being detected after several days. The complex $[OsH_4-$ (PEt₂Ph)₃] showed similar effects with an exchange halflifetime of 20 hr. in neutral solution and less than 10 min. in the presence of trifluoroacetic acid: again no exchange was detected in the presence of tetrabutylammonium hydroxide. The deuterides $[OsD_4L_3]$ with $L = PMe_{2}Ph$ or $PEt_{2}Ph$ were readily prepared in this

R. K. Harris, Canad. J. Chem., 1964, 42, 2275.
 B. L. Shaw and A. C. Smithies, J. Chem. Soc. (A), 1968, 2784, and references therein.

P. R. Brookes and B. L. Shaw, Chem. Comm., 1968, 919.
 J. Chatt, N. P. Johnson, and B. L. Shaw, J. Chem. Soc., 1963, 3371.

way and both were converted back into the tetrahydrides by treatment with a mixture of C_6H_6 -EtOH and trifluoroacetic acid.

This strongly acid-catalysed reaction suggests that a protonated species is involved as intermediate. We have confirmed this by conductimetric titration of $[OsH_4(PMe_2Ph)_3]$ or $[OsH_4(PEt_2Ph)_3]$ with methanolic hydrogen chloride at 0°, when a sharp end point is found after the addition of one mol. of the acid (Figure). Thus the tetrahydrides can act as bases and in the presence of strong acids very probably give the pentahydrido-species $[OsH_5L_3]^+$. Titration of $[OsH_4(PMe_2Ph)_3]$ with methanolic hydrogen chloride at 25° caused slow hydrogen evolution and the conductivity tended to decrease with time without further addition of the acid. At 0° however the hydrogen evolution was negligibly slow in

Plot of conductivity against HCl added for a solution of $[OsH_4(PMe_2Ph)_3]$ in methanol. $\bigcirc 1.3 \times 10^{-2}M$ - $[OsH_4-(PMe_2Ph)_3]$, \triangle blank, *i.e.* no complex present

comparison with the time required to complete a titration.

On addition of a little trifluoroacetic acid to [OsH₄-(PMe₂Ph)₃] in benzene the high-field quartet collapsed to a singlet. This singlet gradually broadened and the quartet gradually re-formed so that after ca. 80 min. at 34° it was virtually as sharp as the original quartet and only slightly weaker in intensity. In benzene-ethanol mixtures addition of CF₃·CO₂H caused the hydride resonance to disappear, probably because of exchange with the hydroxyl protons of the ethanol. Again the resonance gradually reappeared, and was virtually identical with the original after 2 hr. at 34°. These experiments show that the reversible protonation of [OsH₄(PMe₂Ph)₃] takes place very rapidly and the protonated species gradually breaks down, thereby removing acid from the solution. Very probably hydrogen and a fluoroacetate complex of osmium are formed.

Attempts to isolate salts of the protonated species of type $[OsH_5L_3]^+$ were unsuccessful; e.g., the addition of

¹⁶ J. Chatt, R. S. Coffey, and B. L. Shaw, J. Chem. Soc., 1965, 7391. NaBPh₄ to an OsH_4L_3 -HCl-MeOH mixture at 0° gave a precipitate which rapidly became an oil and evolved hydrogen.

The hydrides of types $[OsH_4L_3]$, $[OsH_6(PMe_2Ph)_2]$, and $[OsH_4(PMe_2Ph)_2L]$ showed several medium or weak i.r. absorption bands within the range 1850-2050 cm.⁻¹ due to $\nu(Os-H)$ and also a strong or medium band due to $\delta(Os-H)$ at 805-826 cm.⁻¹. These bands were absent from the spectra of the corresponding deuterides (Tables 3 and 4). Some of the osmium-deuterium stretching

TABLE 4

Some i.r. frequencies $(cm.^{-1} \pm 2 cm.^{-1})$ for corresponding hydrido- and deuterido-osmium complexes (Nujol mulls)

munsy	ν (M–H) or ν (M–D)	$\delta(M-H)$ or $\delta(M-D)$			
$[OsH_4(PMe_2Ph)_3]$	2033w, 2014w, 1970m, 1901w, 1864m	805s			
$[OsD_4(PMe_2Ph)_3]$	1340s	578m, 504s			
[OsH ₄ (PEt ₂ Ph) ₃]	2033w, 1984m, 1864m	826m			
[OsD ₄ (PEt ₂ Ph) ₃]	1367w, * 1344 m	586m, 509s, 454m			
	* Shoulder.				

modes were presumably obscured by absorption bands due to the Nujol or the organic ligands; similarly, some bands due to $\delta(Os-H)$ were obscured.

These tetrahydrido-osmium complexes $[OsH_4(PR_3)_3]$ can be considered as part of a series; *i.e.*, $[WH_6(PR_3)_3]$, $[ReH_5(PR_3)_3]$, $[OsH_4(PR_3)_3]$, and $[IrH_3(PR_3)_3]$, although the iridium complexes exist as *fac*- and *mer*-isomers with complex n.m.r. spectra for the *fac*-isomers, which have so far not been fully interpreted.^{1,2,16}

N.m.r. data for the PMe_2Ph complexes of W, Re, Os, and Ir are in Table 5 and show regular changes. It has

TABLE 5

N.m.r. data for some multihydrido-complexes containing PMe₂Ph

$[ReH_5(PMe_2Ph)_3] \dots$	Hydr. 7 11·93q * 16·12q 18·81q 21·7 21·75q	ides J(PH) 36 14.2 9.8 † 15	Met 7 8·25t 8·33d 8·37i 8·44d		5d-Elec- tron confign. 0 2 4 6 6 6
----------------------------	--	---	---	--	--

* Further coupling with ¹⁸³W, spin $\frac{1}{2}$, abundance 14.4%, $J(^{183}W-1H) = 27.8$ Hz. † Six peaks arranged symmetrically about τ 21.7.

 $\tau\text{-Values}\pm0\text{-}02,$ J values \pm 0-2 Hz. In benzene solution. d = l : l doublet; t = l : 2 : l triplet, q = l : 3 : 3 : l quartet, i = intermediate pattern.^{12,13}

been suggested that the high chemical shift of metal hydrides is mainly due to shielding by electrons in outer d-orbitals.¹⁷ In agreement with this (Table 5), there is a large and regular increase in chemical shift in going from $[WH_6(PMe_2Ph)_3]$ (d^0) to $[IrH_3(PMe_2Ph)_3]$ (d^6).

¹⁷ A. D. Buckingham and P. J. Stephens, J. Chem. Soc., 1964, 2747.

EXPERIMENTAL

M.p.s were determined on a Kofler hot-stage apparatus and are corrected. Operations involving free tertiary phosphines or tertiary arsines were carried out under nitrogen. Analytical and other data are in Table 3. Molecular weights were determined on an Hitachi-Perkin-Elmer apparatus, model 115.

The complexes $mer-[OsCl_3L_3]$ {L = PMe₂Ph, PEt₂Ph, PBuⁿ₃, AsMe₂Ph, or AsEt₂Ph (which is new)} were prepared by the method of Chatt *et al.*⁸

trans-Tetrachlorobis(dimethylphenylphosphine)osmium(IV), [OsCl₄(PMe₂Ph)₂].—Method 1. A stream of chlorine was passed through a solution of mer-trichlorotris(dimethylphenylphosphine)osmium(III) (1·20 g.) in benzene (80 ml.) for 15 hr. Ethanol was then added to the filtered solution when the product formed as prisms (0·62 g.).

Method 2. A solution of mer-trichlorotris(dimethylphenylphosphine)osmium(III) (1.07 g.) in a mixture of dichloromethane (20 ml.) and carbon tetrachloride (20 ml.) was placed ca. 1 cm. from a fluorescent lamp (Mazda, Universal White, 20 w, 2 feet long) for 70 hr. The solvent was then removed under reduced pressure giving an oil which crystallised from ethanol to give the required product (0.816 g.), identified by its i.r. spectrum.

trans-*Tetrachlorobis*(*diethylphenylphosphine*)osmium(IV), [OsCl₄(PEt₂Ph)₂].—This was prepared by method 2; reaction time 4 $\frac{1}{2}$ days.

trans-Tetrachlorobis(diethylphenylarsine)osmium(IV),

 $[OsCl_4(AsEt_2Ph)_2]$.—This was similarly prepared with a reaction time of $3\frac{1}{2}$ days, and crystallised from benzene-methanol.

Action of Dimethylphenylphosphine on trans-Tetrachlorobis-(dimethylphenylphosphine)osmium(IV).—To a solution of trans-tetrachlorobis(dimethylphenylphosphine)osmium(IV) (0.20 g., 0.329 mmole) in hot benzene (10 ml.) was added dimethylphenylphosphine (110 μ l., 0.785 mmole). The resulting orange solution was diluted with light petroleum (b.p. 60—80°), then cooled to -20° whereupon mer-trichlorotris(dimethylphenylphosphine)osmium(III) formed as prisms (0.12 g.).

The complexes $[OsCl_3(PMe_2Ph)_2L]$ (L = AsMe_2Ph, PEt_2-Ph, PPh₃, P(OMe)_2Ph, P(OEt)_3, and Ph_2P·CH_2·CH_2PPh_2) were similarly prepared by adding the ligand L (2·5 mol.) to a hot benzene solution of *trans*- $[OsCl_4(PMe_2Ph)_2]$. For L = P(OEt)₃ the reaction mixture was refluxed for 1 hr.

Tetrahydridotris(dimethylphenylphosphine)osmium(IV), [OsH₄(PMe₂Ph)₃].—Method 1. A suspension of mer-trichlorotris(dimethylphenylphosphine)osmium(III) (0.375 g.) and sodium borohydride (0.160 g.) in ethanol (10 ml.) was warmed on a steam-bath until the red complex had dissolved (ca. 2 min.), giving a white suspension. The solvent was then removed under reduced pressure and the product isolated with benzene. The resultant yellow oil crystallised from methanol as prisms (0.08 g.).

Method 2. To a mixture of mer-trichlorotris(dimethylphenylphosphine)osmium(111) (0.195 g.) and lithium aluminium hydride (0.080 g.) was added dry tetrahydrofuran (10 ml.). After 1 min. ethanol (5 ml.) was added: the solvent was then removed under reduced pressure and the required product isolated as in method 1. Other tetrahydridocomplexes were prepared and purified similarly, by method 1 (see Table 1).

Hexahydridobis(dimethylphenylphosphine)osmium(VI),

 $[OsH_6(PMe_2Ph)_2]$.—To a suspension of tetraphenylarsonium *trans*-tetrachlorobis(dimethylphenylphosphine)osmate-(III) (0.140 g.) in dry tetrahydrofuran (10 ml.) was added lithium aluminium hydride (0.070 g.). The mixture was set aside at *ca*. 20° for 2 min. then methanol (5 ml.) was added whilst maintaining the temperature at *ca*. 10°. The solvent was then removed under reduced pressure and the product isolated with benzene (2 × 10 ml.). It was obtained as a pale yellow oil (0.03 g.), identified by its n.m.r. spectrum.

Action of Sodium Borohydride on trans-Tetrachlorobis-(dimethylphenylphosphine)osmium(IV).—A suspension of trans-tetrachlorobis(dimethylphenylphosphine)osmium(IV) (0.240 g.) and sodium borohydride (0.160 g.) in ethanol (10 ml.) was warmed on a steam-bath until the complex had dissolved, giving a yellow suspension (ca. 3 min.). The solvent was removed under reduced pressure and the residue extracted with benzene. The extracts were taken to dryness under reduced pressure whereupon a pale yellow oil was obtained (0.075 g.), which was shown by its n.m.r. spectrum to be hexahydridobis(dimethylphenylphosphine)osmium(vi). The benzene-insoluble portion of the residue was extracted with water (10 ml.) giving a yellow solution which, on addition of a solution of tetraphenylarsonium chloride (0.100 g.) in water (3 ml.), gave tetraphenylarsonium trans-tetrachlorobis(dimethylphenylphosphine)osmate(III) as microprisms (0.150 g.). Conductivity (10-3M solution) in nitrobenzene at 24°, 24.0 mho cm.2.

fac-Trichlorotris(dimethylphenylphosphine)osmium(III), [OsCl₃(PMe₂Ph)₃].—Tetrahydridotris(dimethylphenylphosphine)osmium(IV) (0·10 g.) was suspended in methanol (2 ml.). Hydrogen chloride was passed through the suspension, whereupon the solid dissolved. The desired *product* then slowly deposited as prisms (0·30 g.). fac-[OsCl₃(MEt₂Ph)₃] (M = P or As) were similarly prepared and recrystallised from chloroform-light petroleum (b.p. 30— 40°) (Table 1).

Deuteriation Studies on Hydride Complexes.—The hydride complex (ca. $2\cdot 5 \times 10^{-4}$ mole) was dissolved in a mixture of C_6H_6 (ca. 500 µl.) and C_2H_5OD (ca. 7×10^{-3} mole) in an n.m.r. tube. Exchange was monitored by integration of the high-field resonance. $CF_3 \cdot CO_2H$ or Bu^n_4NOH (ca. 5 mole %) was added from a microlitre syringe. For the studies on the inhibition by Bu^n_4NOH , the complex was dissolved in C_6H_6 ; Bu^n_4NOH was then added, followed by C_2H_5OD . The solution was immediately agitated and the n.m.r. spectrum recorded periodically. When the reaction was over the solution was evaporated to dryness under reduced pressure and the product crystallised from C_2H_5OD or $C_2H_5OD-D_9O$.

We thank the S.R.C. for a maintenance grant (to P. G. D.). We also thank Johnson Matthey Ltd. for the loan of osmium salts.

[9/1316 Received, August 4th, 1969]