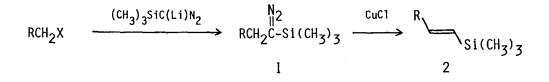
TRIMETHYLSILYLDIAZOMETHANE: A CONVENIENT REAGENT FOR THE PREPARATION OF (E)-1-TRIMETHYLSILYL-1-ALKENES¹

Toyohiko Aoyama^{*} and Takayuki Shioiri


Faculty of Pharmaceutical Sciences, Nagoya City University Tanabe-dori, Mizuho-ku, Nagoya 467, JAPAN

Abstract: The cuprous chloride-catalyzed decomposition of α -trimethylsilyldiazoalkanes gives (E)-1-trimethylsilyl-1-alkenes in high yields.

Vinylsilanes have been well recognized as versatile intermediates in organic synthesis.² Most of methods for the preparation of (E)-1-trimethylsilyl-1-alkenes utilize alkynes and vinyl halides as starting materials.²

We have already revealed that trimethylsilyldiazomethane (TMSCHN₂, (CH₃)₃SiCHN₂), which is quite useful as a reagent for introducing a C₁-unit,³ smoothly reacts with benzylsulfonyl chlorides in the presence of triethylamine to give (E)-2-aryl-1-trimethylsilylethylenes in good yields.⁴ This reaction, however, is not effective for the preparation of (E)-2-alkyl-1-trimethylsilylethylenes since the yields are low. Recent reports⁵ involving the use of aldehydes have prompted us to report our results.

Our continued interest in the use of TMSCHN_2 in vinylsilane synthesis has revealed that (E)-1-trimethylsilyl-1-alkenes can be easily prepared in 2 steps from alkyl halides by alkylation of the lithium salt of TMSCHN_2 ,⁶ followed by decomposition with cuprous chloride.

A typical experimental procedure is as follows: A solution of 1^6 (1 mmol) in dry benzene (3 ml) was added dropwise over 2 min to a boiling suspension of cuprous chloride (5 mg, 5 mol%) in dry benzene (7 ml) under argon. The mixture was stirred at reflux for 30 min, and the catalyst was removed by short column chromatography on silica gel (hexane : benzene = 1 : 1). The eluate was concentrated, and the residue was purified by distillation to give 2.

The results are summarized in Table. Decomposition of various 1 with cuprous chloride smoothly proceeds to give 2 with high stereoselectivity. Cuprous chloride seems to be the

catalyst of choice, though copper sulfate can also be used.

The present method using commercially available $TMSCHN_2$ makes possible the conversion of alkyl halides to homologous (E)-1-trimethylsilyl-1-alkenes, and will provide an added flexibility in the vinylsilane synthesis.

Run	R	Yield(%)	E/Z	bp(°C)/mmHg ^b
1	PhCH2-	89	95/5 ^c	80-90/7
2	сн ₃ (сн ₂) ₈ -	96	95/5 ^d	80-85/1
3	сн ₃ (сн ₂) ₃ сн- сн ₃ сн ₂	86	96/4 ^c	90-95/20
4	CH2=CH(CH2)8-	96	93/7 ^d	65-70/0.1
5	CH3(CH2)2C=CCH2~	87	97> ^d	65-70/5
6		82	95/5 ^d	100-105/15
7	Ph-	89	94/6 ^c	110-115/25
8	CH2-	91	95/5 ^d	100-105/13

Table^a Preparation of (E)-1-Trimethylsilyl-1-alkenes (2)

a) All products gave satisfactory spectral data and elemental analysis. b) By Kugelrohr distillation. c) Determined by GLC. d) Determined by 1 H-NMR.

Acknowledgement This work was supported by a Grant-in-Aid for Scientific Research(No. 63571001) from the Ministry of Education, Science and Culture, Japan.

References and Notes

- New Methods and Reagents in Organic Synthesis. 80. For part 79, see S. Kato, Y. Hamada, and T. Shioiri, <u>Tetrahedron Lett.</u>, submitted.
- E.W. Colvin, "Silicon in Organic Synthesis," Butterworth, London, 1981, Chapter 7; W.P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin, 1983, Chapter 7.
- a) T. Aoyama and T. Shioiri, <u>Synthesis</u>, 228 (1988); b) T. Aoyama and T. Shioiri, <u>Tetrahedron Lett.</u>, 27, 2005 (1986); For a review, see T. Shioiri and T. Aoyama, <u>J. Synth</u>. <u>Org. Chem. Japan</u>, 44, 149 (1986).
- 4. T. Aoyama, S. Toyama, N. Tamaki, and T. Shioiri, <u>Chem. Pharm. Bull</u>., 31, 2957 (1983).
- 5. K. Takai, Y. Kataoka, T. Okazoe, and K. Utimoto, <u>Tetrahedron Lett</u>., 28, 1443 (1987); J. Barluenga, J.L. Fernández-Simón, J.M. Concellón, and M. Yus, <u>Synthesis</u>, 234 (1988).
- 6. α -Trimethylsilyldiazoalkanes (1) were easily prepared from alkyl halides and lithium trimethylsilyldiazomethane. See ref. 3b.

(Received in Japan 10 September 1988)