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Strigolactones (SLs) are new plant hormones with varies important bio-functions. This Letter deals with
germination of seeds of parasitic weeds. Natural SLs have a too complex structure for synthesis. There-
fore, there is an active search for SL analogues and mimics with a simpler structure with retention of
activity. SL analogues all contain the D-ring connected with an enone moiety through an enol ether unit.
A new mechanism for the hydrolysis SL analogues involving bidentate bound water and an a,b-hydrolase
with a Ser-His-Asp catalytic triad has been proposed. Newly discovered SL mimics only have the D-ring
with an appropriate leaving group at C-5. A mode of action for SL mimics was proposed for which now
supporting evidence is provided. As predicted an extra methyl group at C-4 of the D-ring blocks the ger-
mination of seeds of parasitic weeds.

� 2013 Elsevier Ltd. All rights reserved.
Strigolactones (SLs) are new plant hormones that are currently
much in focus.1–10 The predominant activities of these SLs are
stimulation of germination of seeds of parasitic weeds,1–10 branch-
ing factor of AM fungi,4,11,12 and inhibition of shoot branching and
bud outgrowth.13–15 This Letter deals primarily with the activity of
SLs as germination stimulants.

Naturally occurring SLs are present in the root exudates of
many plants, especially host plants for the parasitic weeds. They
invariably contain three annulated rings, the ABC scaffold,
connected with a butenolide ring (D-ring) via an enol ether
unit.1,2,7–10 Typical examples are (+)-strigol (1)16 and (�)-ent-20-
epi-orobanchol (2)17–19 (Fig. 1). For practical application these
natural SLs have a too complex structure, and therefore, SL
analogues have been developed with a much simpler structure
but with retention of the essential bioactivity.9,10 The most well
known analogue is GR24 (3)9,10,20,21 (Fig. 1).

For germination stimulants a model compound was used for the
design and preparations of new bioactive analogues. This model
(Fig. 2) was based on a structure–activity analysis combined with
a tentative mode of action for germination.9,10,22 It was shown that
the bioactiphore of SLs resides in the CD part of the SL molecules,
implying that the a,b-unsaturated carbonyl moiety connected via
an enol ether unit with the D-ring is predominantly responsible
for the bioactivity.9,10,22 Illustrative examples of such SL analogues
designed on the basis of the modelcompound shown in Figure 2 are
Nijmegen-1 (4)23 and analogues derived from tetralone (5),24,25 hy-
droxy coumarin (6)26 and saccharin (7)27 (Fig. 1).

Although the full details of the germination process are not
known yet, it is assumed that on a molecular level germination is
triggered by an initial reaction of water with the enol ether moiety
in a Michael fashion whereby the water molecule is bound in a
bidentate manner.10 In a subsequent retro-Michael reaction a
cleavage process gives the hydroxy butenolide and the formylated
ABC scaffold.9,10,22 There is some evidence that this hydrolytic
cleavage is catalyzed by an a/b hydrolase having a Ser-His-Asp
canonical catalytic triad at the active site that is capable of accom-
modating an SL molecule.28 This newly proposed mechanism of
hydrolytic cleavage reaction is depicted in Figure 3, whereby histi-
dine serves as the base to initiate the Michael addition of water.

Recently, we reported our serendipitous finding that com-
pounds lacking the enol ether unit, such as the saccharine D-ring
derivative 8 and the aroyloxy substituted butenolides 9 (Fig. 4)
which are not in accordance with the model shown in Fig. 2, are ac-
tive as germinating agents for parasitic weeds.27 These compounds
are named as SL mimics.

A structurally related SL mimic is butenolide 10, which shows a
moderate germination activity at a relative high concentration.29

In order to rationalize the activity of the SL mimics a mode of
action shown in Figure 5 was tentatively proposed.27 An essential
feature of this proposal is a proton shift prior to the elimination
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Figure 1. Structures of some natural SLs, analogue GR24 and newly designed SL analogues.
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of the leaving group L. In the SL mimics a benzoate and a saccha-
ride ion serve as L.

In this Letter we provide supporting evidence for this mode of
action. By replacing the hydrogen atom at C-4 by a methyl group
a modified SL mimic is obtained in which the essential proton
transfer cannot take place anymore and accordingly these modified
SL mimics are predicted to be inactive as germinating agents.

The synthesis of such C-4 methyl containing SL mimics is
straightforward. A set of 4 SL mimics with a C-4 hydrogen and 3
mimics with a C-4 methyl was prepared as shown in Figure 6.
The SL mimics 9 were readily obtained by a coupling of bromo-but-
enolide with an appropriate sodium carboxylate.30 Coupling of a
suitable acid chloridewith 3,4-dimethyl hydroxy butenolide in
the presence of pyridine resulted in the SL mimics 11. 32 There
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are a good reasons to believe that the SL mimics 9 and 11 are suf-
ficiently stable in aqueous solution. It was shown previously that
enantiopure 4-methyl-5-oxo-2,5-dihydro-2-furanyl acetate (SL
mimic 9a with an acetate instead of a benzoate) retains its optical
activity in phosphate buffers of pH 6.7 and 8.34 In addition, aque-
ous 30 lM solution of 9c and 11d were monitored with time using
HPLC. No change was observed after 5 days; hence, untimely
hydrolysis of these SL mimics does not occur. The mimics 9d and
11c slowly hydrolyze with an estimated half life of 3 days.35

These seven compounds were assayed as germinating agents
for seeds of Striga hermonthica, Phelipanche ramosa (France) and
P. ramosa (Italy), using GR 24 as positive and water as negative
control.36, 37 The results of these bioassays are collected in Figure 7.
The SL mimics 9a, b, c and d show a good response for Striga seeds
although the required concentrations are higher than needed for
germination of both P. ramosa’s. The activity of 9d is different for
thetwo types of ramosa’s for an unknown reason. The data clearly
demonstrate that the 3,4-dimethyl butenolides 11a, 11b and 11c
are practically inactive at concentrations at which the SL mimics
with one methyl group at C-3 only are highly active. This observa-
tion is in full accordance with the prediction on the basis of the
mode of action shown in Figure 5. The SL mimic29 10 also fits in
this picture. It should be noted that mimics in which the cyano
group in 10 is replaced by a weaker electron-withdrawing group
are inactive towards S. hermonthica.29

There is a considerable differencebetween SL analogues having
an enol ether unit and SL mimics that lack such a unit. When an ex-
tra methyl group is introduced in the butenolide ring in analogue
Nijmegen-1 (4) the germination activity is hardly affected,38

whereas an extra methyl in mimics 9 results in a dramatic loss
of activity. This difference in behavior strongly suggests that ana-
logues and mimics have different receptor sites as is reflected by
their different modes of action. The SL mimics cannot undergo a
hydrolytic process as described above for SL analogues. Conse-
quently, the bioactiphore for SL analogues and SL mimics must
be different. For SL mimics the unsaturated lactone, that is, the but-
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Figure 6. Synthesis
enolide ring, is the only conceivable reactive functionality that can
serve as bioactiphore, whereby substituents and functional groups
are decisive for the bioactivity. This is exemplified by the SL mim-
ics describedin this Letter.

In this preliminary study only two types of seeds have been bio-
assayed. It is well known that the response of seeds of different
parasitic weeds to SL analogues can be quite different.18,39 That
possibly may also be the case for SL mimics.

The new SL mimics 9 are of interest for the reduction of seeds
banks of parasitic weeds using the concept of suicidal germina-
tion.9,10 It is well documented that parasitic weeds are causing se-
vere damage to important food crops especially in African
countries.40 Reduction of seeds banks of these weeds is an option
to eradicate these noxious parasites.9,10,40,41,42

The results described above demonstrate that small changes in
the molecular structure of a SL mimic may have an enormous im-
pact on the bioactivity.
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Figure 7. Bioassays of Striga hermonthica and Phelipanche ramosa collected in France and in Italy. Seed germination induced by SL mimics 9a, 9b, 9c, 9d, 11a, 11b and 11c in
the concentration range 3 � 10�7, 3 � 10�6, 3 � 10�5, 3 � 10�4, 3 � 10�3, 3 � 10�2, 3 � 10�1, 3.0 and 30 lM. The SL analogue GR24 and dematerialized water were used as
positive and negative control, respectively (n = 6). Bars represent means ± s.e.
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concentrated in vacuo. The residue was quenched with water (20 ml) and
extracted with ethyl acetate (3 � 15 ml). The combined organic layers were
washed with saturated NaHCO3, water, brine, dried (Na2SO4) and then
concentrated in vacuo. The resultant crude product was purified by flash
chromatography (silica gel, heptane/ethyl acetate 19:1) to give pure 9c
(0.512 g, 69 % yield), mp 103.2–103.6. 1H NMR (CDCl3, 400 MHz): d 8.06 (d,
2H, J = 8.4 Hz), 7.11 (m, 1H), 7.02 (m, 1H), 6.93 (m, 2H), 3.87 (s, 3H), 2.03 (s,
3H); 13C NMR (CDCl3, 100 MHz): d 171.2, 164.4, 164.2, 142.4, 134.4,132.2,
120.6, 113.9, 92.9, 55.5, 10.7. m/z 248.06833, calc. for C13H12O5: 248.06847. 4-
Methyl-5-oxo-2,5-dihydro-2-furanyl-40-nitrobenzoate (9d). Prepared as
described for 9c starting from p-nitrobenzoic acid (0.535 g, 3.2 mmol). Yield
0.648 g, 82%, colorless tiny crystals, mp 141.8–142.1. 1H NMR (CDCl3,
400 MHz): d 8.38 (d, 2H, J = 8.4 Hz), 8.23 (d, 2H, J = 8.4 Hz), 7.13 (s, 1H), 7.06
(s, 1H), 2.06 (s, 3H); 13C NMR (CDCl3, 100 MHz): d 170.7, 163.0, 151.1, 141.5,
135.1, 133.7, 131.2, 123.7, 93.3, 10.7. m/z 263.04395, calc. for C12H9NO6:
263.04432.

31. Malik, H.; Kohlen, W.; Jamil, M.; Rutjes, F. P. J. T.; Zwanenburg, B. Org. Biomol.
Chem. 2011, 9, 2286.

32. 3,4-Dimethyl-5-oxo-2,5-dihydro-2-furanyl-benzoate (11a). To a solution of 5-
hydroxy-3,4-dimethylbutenolide33 (0.385 g, 3.0 mmol) and benzoyl chloride
(0.492 g, 3.5 mmol) in dry dichloromethane (10 ml), was added dry pyridine
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butenolide had reacted (3 h, monitored by TLC, heptane/ethyl acetate 7:3). The
mixture was quenched with water, acidified with cold aqueous 1 N HCl and
extracted with ethyl acetate (2 � 20 ml). The organic layer was washed with
water, brine, dried (Na2SO4) and concentrated in vacuo. The resultant crude
product was crystallized from ethyl acetate/heptane to yield pure 11a as a
colorless solid (0.512 g, 73%), mp 86.7–86.8 �C; 1H NMR (CDCl3, 400 MHz): d
8.06 (m, 2H), 7.49 (m, 1H), 7.45 (m, 2H), 7.00 (s, 1H), 2.04 (s, 3H), 1.92 (s, 3H);
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methoxybenzoyl chloride (0.546 g, 3.2 mmol). Yield 0.632 g, 80%, colorless tiny
crystals, mp 141.1–141.4. 1H NMR (CDCl3, 400 MHz): d 8.01 (d, 2H, J = 7.2 Hz),
6.98 (s, 1H), 6.93 (d, 2H, J = 7.2 Hz); 73.87 (s, 3H), 2.03 (s, 3H), 1.91 (s, 3H); 13C
NMR (CDCl3, 100 MHz): d 171.7, 164.6, 164.2, 153.7, 132.2, 127.0, 120.6, 113.8,
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4-nitrobenzoyl chloride (0.576 g, 3.1 mmol). Yield 5.34 g, 64%), slightly yellow
crystals, mp 145.1–145.3. 1H NMR (CDCl3, 400 MHz): d 8.33 (d, 2H, J = 7.2 Hz),
8.23 (d, 2H, J = 7.2 Hz), 7.00 (s, 1H), 2.06 (s, 3H), 1.94 (s, 3H); 13C NMR (CDCl3,
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