This article was downloaded by: [Moskow State Univ Bibliote] On: 19 February 2014, At: 06:03 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information:

http://www.tandfonline.com/loi/gpss20

ACTION DES ENAMINES SUR LES MONOCHLOROPHOSPHINES: SYNTHESE DES β-CETOPHOSPHONATES

Salim Barkallah^a, Mohamed Boukraa^a, Hedi Zantour^a & Belgacem Baccar^a

^a Laboratoire de Synthèse Organique, Faculté des Sciences , 1060, Tunis, Tunisie Published online: 24 Sep 2006.

To cite this article: Salim Barkallah , Mohamed Boukraa , Hedi Zantour & Belgacem Baccar (1996) ACTION DES ENAMINES SUR LES MONOCHLOROPHOSPHINES: SYNTHESE DES β -CETOPHOSPHONATES, Phosphorus, Sulfur, and Silicon and the Related Elements, 108:1-4, 51-56

To link to this article: http://dx.doi.org/10.1080/10426509608029637

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

Terms & Conditions of access and use can be found at <u>http://www.tandfonline.com/</u> page/terms-and-conditions

ACTION DES ENAMINES SUR LES MONOCHLOROPHOSPHINES: SYNTHESE DES β-CETOPHOSPHONATES

SALIM BARKALLAH, MOHAMED BOUKRAA, HEDI ZANTOUR et BELGACEM BACCAR

Laboratoire de Synthèse Organique, Faculté des Sciences. 1060-Tunis, Tunisie

(Received June 22, 1995; in final form August 3, 1995)

In recent years β -phosphoryl ketones were considered as valuable intermediates in organic synthesis. In the present work we studied the reaction of enamines 1 with monochlorophosphine 2 which led to the β -phosphinoyl cycloalkanones 3. The structure of products 3 was confirmed by NMR and IR spectroscopy.

Key words: Enamine, β -ketophosphonates, RMN ³¹P, RMN ¹³C, RMN ¹H, IR.

INTRODUCTION

Dans le cadre de nos travaux sur l'etude des propriétés des hydrazones de cétophosphonates¹⁻⁵ nous avons été amenés à nous intéresser à la synthèse des cétones β -phosphonatées. Etant donné leur intérêt comme intermédiaires pour l'accès à plusieurs composés organiques,⁶⁻¹¹ ces cétones ont été préparées par de nombreuses méthodes.¹¹⁻²⁰ Parmi ces méthodes, la phosphorylation des cyclanones via leurs ènamines¹⁷ mérite d'être développée; d'abord pour en étendre le domaine d'application à diverses cyclanones et monohalophosphines, et ensuite pour en améliorer le rendement. Nous montrons dans ce travail que, réalisée dans l'acétonitrile, l'action des ènamines issues de cétones cycliques et de la pyrrolidine sur la p-chlorodiphénylphosphine ((C₆H₅)₂PCl) ou sur le diéthyl chlorophosphite ((EtO)₂PCl) suivie d'oxydation, de sulfuration ou de sélénation puis d'hydrolyse acide, constitue une voie générale et performante d'accès aux cyclanones β -phosphonatées.²¹

RESULTATS ET DISCUSSION

La fonctionnalisation des cétones via leurs ènamines est une voie de synthèse bien connue.²² Tolmachev et Coll¹⁷ ont montré que cette réaction peut être utilisée pour l'accés à des cyclanones β -phosphonnatées. Le passage de l'ènamine <u>1</u> au β -céto-phosphonate <u>3</u> se déroule en trois étapes et peut être représenté par le Schéma-1. Ces trois étapes nécéssitant des conditions opératoires différentes, nous avons suivi la réaction en RMN du ³¹P pour déterminer l'effet du solvant et des réactifs sur la durée de chacune d'entre elles et sur le rendement en β -cétophosphonates <u>3</u>. Nous avons remarqué au cours de nos essais que la durée de la première étape dépend essentiellement de la nature du solvant. Cette durée diminue notablement quand on passe du benzène au toluène puis au dioxanne et de celui-ci à l'acétonitrile. Pour X

SCHÉMA 1

1

0

1

0

1

= 0, Se, le temps nécéssaire à la réalisation de la deuxième étape est indépendant du solvant, par contre la sulfuration de l'ènamine phosphorée est instantanée à température ambiante quand on opère dans l'acétonitrile. Enfin la troisième étape est une réaction instantanée et ne dépend ni du solvant ni de la nature des réactifs. Quant au rendement en cétone β -phosphonatée <u>3</u> il est affecté par la nature des réactifs et surtout du solvant utilisé; les meilleurs rendements sont obtenus quand la réaction est effectuée dans l'acétonitrile. Nour décrivons, à titre d'exemple, ce que l'on observe lors de la synthèse du composé **3d**.

Lorsque l'on ajoute une quantité stoechiométrique de $(C_6H_5)_2PCl$, à un mélange équimoléculaire de 1-pyrrolidinocyclopentène, on observe sur le spectre de RMN du ³¹P effectué à la fin de l'addition du réactif, deux signaux l'un intense à 82,5 ppm relatif au réactif $(C_6H_5)_2PCl$) et l'autre de faible intensité se situant à 0,7 ppm attribuable à la énamine phosphorée (A). Le signal à 82,5 ppm diminue d'intensité avec le temps au profit de celui à 0,7 ppm pour disparaitre totalement au bout de 72

0

n

β -KETOPHOSPHONATES

heures si la réaction est menée dans le benzène, 60 heures dans le le toluène, 8 heures dans le dioxanne et seulement 2 heures quand la réaction est réalisée dans l'acétonitrile. L'orsqu'on ajoute ensuite une quantité équimolaire de soufre on voit apparaitre à côté du signal à 0,7 ppm un pic vers 49,5 ppm indiquant le passage d'un P^{III} à un P^{IV} (B). Le signal 0,7 ppm disparait au bout de quelques minutes de contact. L'hydrolyse acide fait disparaitre le signal à 49,5 ppm et fait apparaitre un autre à 45,8 ppm caractéristique de la cétone β -phosphonatée <u>3d</u>. Le rendement en ce dernier composé est de 60% quand la réaction est réalisée dans le benzène, 65% dans le toluène, 75% dans le dioxanne et 95% dans l'acétonitrile.

ETUDE SPECTROGRAPHIQUE

Spectroscopie IR

Les cétones β -phosphonatées <u>3</u> montrent toutes, à côté des absorptions relatives aux vibrateurs P=O, P=S ou P=Se respectivement vers 1225 cm⁻¹, 1100 cm⁻¹ et 1100 cm⁻¹, une bande intense à 1700 cm⁻¹ caractéristique due groupement C=O.

Spectroscopie RMN

Les résultats de la RMN du ¹H sont conformes aux structures des composés obtenus. Il est à signaler que contrairement à ce qui a été observé pour leurs homologues en série ouverte¹³ comportant le motif $(EtO)_2P(O)$ qui existent sous forme d'un équilibre céto-énolique, les composés <u>3</u> se présentent uniquement sous la forme cétonique.

Les déplacements chimiques de RMN du ¹³C (Tableau I) sont en accord avec la structure proposée et conformes à certaines données de la littérature.¹¹ L'analyse des spectres de RMN du ¹³C révèle par ailleurs que les deux groupements phényles sont magnétiquement non équivalents. Nous observons en effet deux types de carbones ipso, méta et para, tous couplés au noyau de phosphore avec des constantes de couplages égales deux à deux. La détermination de la structure du produit <u>3</u>e par rayons-X²³ corrobore les résultats observés en RMN, et révèle en outre que les deux motifs P=S et C=O ne sont pas coplanaires.

PARTIE EXPERIMENTALE

Les spectres IR ont été réalisés en solution dans le CHCl₃ sur un spectromètre Perkin Elmer 681 dont la précision de mesure est de 2 cm⁻¹ dans le domaine 4000-400 cm⁻¹.

Les spectres de RMN de ³¹P, ¹³C et ¹H ont été enregistrés en solution dans CDCl₃ sur un spectrographe Bruker WP 90 (³¹P), Bruker 250 (¹³C, ¹H) et JEOL JNM-PMX 60 (¹H). Les déplacements chimiques sont comptés positivement à champ faible par rapport au TMS comme référence interne pour le ¹H et le ¹³C et par rapport à H₃PO₄ à 85% comme référence externe pour le ³¹P.

Synthèse des ènamines

Les ènamines ont été préparées selon la méthode décrite dans la littérature.²⁴

Synthèse des cétones β -phosphonatées

A un mélange de 0,01 mole d'ènamine fraichement distillée et 0,012 mole de triéthylamine anhydre dans 50 ml d'acétonitrile anhydre, refroidi à -10° C et conservé sous atmosphère inerte, on ajoute goutte à

		¹³ C NMI	R pour les β -céte	ophosphonates $\underline{3}$		
	0 X		R ¹	R ²	R	X
	$ \begin{array}{c} \overbrace{I}^{3} \\ R^{1} \\ R^{2} \end{array} \xrightarrow{I} \\ R^{2} \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ R^{2} \\ R^{2} \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ R^{2} \\ R^{2} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ R^{2} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ R^{2} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ R^{2} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \begin{array}{c} \overbrace{I}^{3} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ $ $I \\ \xrightarrow{I} \\ \end{array} \xrightarrow{I} \\ $ $I \\ \xrightarrow{I} \\ $ $I \\ $		$\begin{array}{ccccc} & 4 & 5 \\ & -CH_2-CH_2- \\ & 4 & 5 & 6 \\ & -CH_2-CH_2-CH_2- \\ & 4 & 5 & 6 & 7 \\ & -CH_2-CH_2-CH_2-CH_2- \\ & & 8 \\ & -(CH_2)_9- \end{array}$		${}^{9}_{C_{6}H_{5}}$ O 9 10 S O-CH ₂ -CH ₃ Se	
C ₁	<u>3</u> a 49,3(64,6)	<u>3</u> b 52,4(60,2)	<u>3</u> c 56,5(58,2)	<u>3</u> d 49,2(50,9)	<u>3</u> e 49,1(51,4)	<u>3</u> f 47,7(36,9)
C ₂	212,8(2,9)	207,4(3,3)	208,9	212,3(2,9)	212,4(2,6)	188,5
C ₃	39,9	42,9	43,6	40,6(1,6)	40,7	40,5
C ₄	21,6(7)	26,9	26,5	25,7	25,7	-
C ₅	25,1	28,0(3,4)	30,3	21,4(8,5)	24,2(8,4)	-
C ₆	-	22,6(3,8)	28,2	-	21,4(8,7)	-
C7	-	-	23,8(3,9)	-	-	-
C ₈	-	-	-	-	-	21,7-25,9
C9	128,4-132,1	128,1-132,6	128,2-133,9	128,3-132,9	1 28 ,3-133,0	123,9-130,5
C ₁	<u>3g</u> 53,6(72,5)	<u>3</u> h 57,2(73,9)	<u>3</u> i 48,3(43,9)	3j 52,3(42,4)	<u>3</u> k 54,5(93,3)	<u>3</u> 1 57,6(87,5)
C ₂	206,3(3,7)	204,3(4,6)	211,9(2,4)	206,5(3,9)	210,5(1,9)	204,7(4,5)
C ₃	40,2	41,5(1,5)	40,5(1,7)	42,6	39,1	41,5
C ₄	24,3	24,3	26,2	28,4	25,7	25,9
C ₅	26,8(2,9)	27,8(3,0)	21,1(9,5)	26,4(5,0)	20,7(9,8)	27,9(2,3)
C ₆	-	21,9(6,0)	-	23,4(8,5)	-	21,6(6,1)
C7	-	-	-	-	-	-
C ₈	-	-	-	-	-	-
C9	62,4(6,8)	62,4(6,8)	128,1-132,6	128,2-132,9	63,2(6,8)	63,5(6,8)
	62,6(6,8)	62,7(6,8)			64,3(6,8)	63,8(6,8)
C ₁₀	15,4	15,5	•	-	15,5	15,4

TABLEAU I

54

 β -KETOPHOSPHONATES

goutte 0,01 mole de p-chlorodiphénylphosphine (2,20 g) ou de diéthyl chlorophosphite (1, 56 g) dans 30 ml d'acétonitrile anhydre. On maintient l'agitation pendant 2 heures, puis on traite par le DMSO, le soufre ou le sélénium comme indiqué ci-dessous.

a) Synthèse des cètones <u>3a-3c</u>

L'oxydation du phosphore est réalisée par ajout au mélange réactionnel précédent de 0,01 mole de diméthylsulfoxyde. Après 45 min environ, on hydrolyse par un excès de solution d'acide chlorhydrique 6N. Les deux phases ainsi obtenues sont séparées. On extrait la phase aqueuse par 20 ml de chloroforme. Les deux phases organiques sont rassemblées, séchées sur MgSO₄ anhydre, puis concentrée sous vide. Le solide qui se forme est recristallisé dans le benzène.

b) Synthèse des cétones 3d-3h

On ajoute au mélange réactionnel 0,01 mole de fleur de soufre. Celui-ci se solubilise en quelques minutes avec une légère élévation de température. On laisse la solution revenir à température ambiante puis on ajoute un excès d'une solution de HCl 6N. Après séparation des deux phases et extraction de la phase aqueuse par 20 ml de chloroforme, les phases organiques sont rassemblées, séchées sur MgSO₄ et concentrées sous vide. Le produit obtenu est recristallisé dans le benzène s'il est solide et purifié par chromatographie sur colonne de gel de silice s'il est liquide (3g, 3h) en utilisant comme éluant un mélange d'acétate d'éthyle et d'hexane dans des proportions égales.

c) Synthèse des cétones 3i-3l

On ajoute au mélange réactionnel 0,01 de sélénium, et on porte à reflux pendant 8 heures. On laisse la solution revenir à température ambiante puis on ajoute un excès d'une solution de HCl 6N. Après séparation des deux phases et extraction de la phase aqueuse par 20 ml de chloroforme, les phases organiques sont rassemblées, séchées sur MgSO₄ et concentrées sous vide. Le produit obtenu est recristallisé dans le benzène s'il est solide et purifié par chromatographie sur colonne de gel de silice s'il est liquide (3k, 3l) en utilisant comme éluant un mélange d'acétate d'éthyle et d'hexane dans des proportions égales.

3a: Fusion: 157°C Rdt = 86% RMN ³¹P: δ = 31.7; RMN ¹H: δ = 1.75–2.62 ((CH₂)₃), 3.41 (²J_{HP} = 13.5 Hz, P(O)—CH—), 7.34–8.15 (H arom.). IR: ν C==O 1700 cm⁻¹, ν P==O 1225 cm⁻¹.

3b: Fusion: 128°C Rdt = 89% RMN ³¹P: δ = 30.9; RMN ¹H: δ = 1.55–2.82 ((CH₂)₄), 3.49 (P(O)— CH—), 7.43–8.00 (H arom.). IR: ν C==O 1702 cm⁻¹, ν P==O 1220 cm⁻¹.

3c: Fusion: 134°C Rdt = 84% RMN ³¹P: δ = 31.0; RMN 1H: δ = 3.35 (P(O)--CH---), 0.93-3.26 ((CH₂)₅), 7.21-8.02 (H arom.). IR: ν C==O 1702 cm⁻¹, ν P==O 1220 cm⁻¹.

3d: Fusion: 140°C Rdt = 95% RMN ³¹P: δ = 45.8; RMN ¹H: δ = 1.77–2.46 ((CH₂)₃), 3.59–3.72 (²J_{HP} = 13.1 Hz, ³J_{HH} = 8.8 Hz, P(S)—CH—), 7.39–7.95 (H arom.). IR: ν C=O 1700 cm⁻¹, ν P=S 1100 cm⁻¹.

3e: Fusion 151°C Rdt = 88% RMN ³¹P: δ = 44.8, RMN ¹H: δ = 1.54–2.63 ((CH₂)₄), 3.69 (²J_{HP} = 18.8 Hz, ³J_{HH} = 8.5 Hz, P(S)—CH—), 7.25–8.21 (H arom.). IR: ν C==O 1702 cm⁻¹, ν P==S 1100 cm⁻¹.

3f: Fusion: 165°C Rdt = 84% RMN ³¹P: δ = 50.1; RMN ¹H: δ = 1.12–3.31 ((CH₂)₁₀), 3.72 (P(S)- \overrightarrow{CH} ----), 7.33–8.02 (H arom.). IR: ν C==O 1700 cm⁻¹, ν P==S 1100 cm⁻¹.

<u>3g</u>: Rdt = 76% RMN ³¹P: δ = 90.7; RMN ¹H: δ = 1.32 (O---CH₃), 4.14 (O---CH₂), 1.73-2.65 ((CH₂)₃), 3.92 (P(S)---CH---). IR: ν C==O 1700 cm⁻¹, ν P==S 1100 cm⁻¹.

3h: Rdt = 70% RMN ³¹P: δ = 92,4; RMN ¹H: δ = 1.32 (O--C--CH₃), 4.14 (O--CH₂), 1.62-2.69 (CH₂)₄), 3.09 (³J_{HP} = 21.0 Hz, P(S)--CH--). IR: ν C==O 1705 cm⁻¹, ν P==S 1100 cm⁻¹, ν P--O--C 1025 cm⁻¹.

3i: Fusion: 125°C Rdt = 93% RMN ³¹P: δ = 38.7 (J_{P-5e} = 748.6 Hz); RMN ¹H: δ = 1.67–2.60 ((CH₂)₃), 3.83 ($^{2}J_{HP}$ = 13.9 Hz, $^{3}J_{HH}$ = 9.9 Hz, P(Se)—CH—), 7.23–8.17 (H arom.). IR: ν C=O 1700 cm⁻¹, ν P ==Se 1100 cm⁻¹.

<u>3</u>J: Fusion: 102°C Rdt = 90% RMN ³¹P: δ = 36.7 (J_{P-sc} = 746.0 Hz); RMN ¹H: δ = 1.73–2.65 ((CH₂)₄), 3.94 (P(Se)—CH—), 7.20–8.21 (H arom.). IR: ν C==O 1700 cm⁻¹, ν P==Se 1100 cm⁻¹.

3k: Rdt = 80% RMN ³¹P: δ = 96.7 (J_{P-se} = 746.0 Hz); RMN ¹H: δ = 1.73-2.65 ((CH₂)₃, 3.94 (P(Se) - CH-), 7.20-8.21 (H arom.). IR: ν C==0 1700 cm⁻¹, ν P==Se 1100 cm⁻¹.

31: Rdt = 85% RMN ³¹P: δ = 98.6; RMN ¹H: δ = 1.16 (O---C---CH₃), 3.98 (O---CH₂), 1.69-2.29

 $((CH_2)_4)$, 2.81 (² J_{HP} = 15.0 Hz, ³ J_{HH} = 8.4 Hz P(Se)--CH--). IR: ν C=-O 1710 cm⁻¹, ν P=-Se 1100 cm⁻¹, ν P--O--C 1020 cm⁻¹.

REMERCIEMENTS

Les spectres de RMN ont été réalisés au Laboratoire de Synthèse Structure et Réactivité des Molecules Phosphorées à l'Université P. SABATIER de Toulouse (France). Nous remercions Monsieur le Professeur M. Sanchez et Mademoiselle M. T. Boisdon pour leur aide et leur collaboration.

REFERENCES

- 1. N. Ayed, R. Mathis, F. Mathis et B. Baccar, C. R. Acad. Sci., 292, 187 (1981).
- 2. N. Ayed, B. Baccar, F. Mathis et R. Mathis, Phosphorus and Sulfur, 21, 335 (1985).
- 3. A. Ben Akacha, N. Ayed, B. Baccar et C. Charrier, Phosphorus and Sulfur, 40, 63 (1988).
- 4. A. Ben Akacha, S. Barkallah et B. Baccar, Phosphorus, Sulfur and Silicon, 69, 163 (1992)
- 5. M. Boukraa, N. Ayed, A. Ben Akacha, H. Zantour et B. Baccar, *Phosphorus, Sulfur and Silicon* (sous presse).
- 6. J. M. Varlet, N. Collignon et P. Savignac, Tetrahedron, 37, (21) 3713 (1981).
- 7. E. E. Aboujaoude, N. Collignon et P. Savignac, Phosphorus and Sulfur, 31, 231 (1987).
- 8. B. E. Maryanoff et A. B. Reitz, Chem. Rev., 89, 863 (1989).
- 9. S. M. Ruder et V. R. Kulkarni, Synthesis, 945 (1993).
- 10. S. M. Ruder et V. R. Kulkarni, J. Chem. Soc., Chem. Commun., (18), 2119 (1994).
- 11. M. Mikolajczyk, P. Kielbasinski, M. W. Wieczorek, J. Blaszczyk et A. Kolbe, J. Org. Chem., 55, 1198 (1990).
- 12. F. Mathey et P. Savignac, Tetrahedron, 34, 649 (1978).
- 13. C. Herzig et J. Gasteiger, Chem. Ber., 115, 601 (1982).
- 14. P. Sampson, G. B. Hammond et D. F. Wiemer, J. Org. Chem., 51, 4342 (1986).
- 15. T. Calogeropoulou, G. B. Hammond et D. F. Wiemer, J. Org. Chem., 52, 4185 (1987).
- 16. B. Corbel, D. Hernot, J. P. Haelters et G. Sturtz, Tetrahedron Letters, 28, (52), 6605 (1987).
- A. A. Tolmachev, L. N. Morozova, A. N. Kostyuk, R. D. Lampeka, E. S. Kozlov et A. M. Pinchuk, *Zh. Obshch. Khim.*, 59, (10), 2388 (1989). C.A. 112, 139184 n (1990).
- 18. K. Lee et D. F. Wiemer, J. Org. Chem., 56, 5556 (1991).
- A. A. Tolmachev, A. V. Podgornyi, A. N. Kostyuk, I. F. Tsymbal, E. S. Kozlov et A. M. Pinchuk, *Zh. Obshch, Khim.*, **62**, (6), 1422 (1992).
- K. Dea Young, K. Myeon Sik, J. Chem. Soc. Perkin Trans 1 (23) 3359 (1994). C.A. 118, 102079 e (1993).
- S. Barkallah, A. Ben Akacha, M. Boukraa, H. Zantour et B. Baccar, ESOC-8, Abstr. p. 63, Barcelone-Spain (1993).
- 22. P. W. Hicmott, Tetrahedron, 38, Part I, 1975 (1982). Part II, 3363 (1982).
- 23. M. Boukraa, T. Jouini, S. Barkallah, A. Ben Akacha, H. Zantour et B. Baccar, Acta Cryst. C 51 (1995) (sous presse).
- G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz et R. Terrel, J. Am. Chem. Soc., 85, 207 (1963).