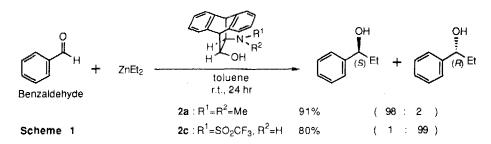
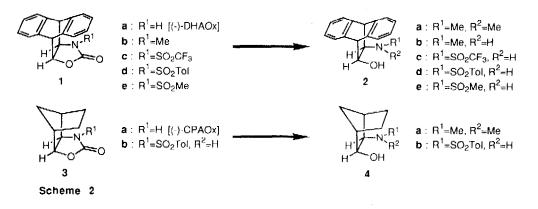
DRAMATIC REVERSAL OF ENANTIOSELECTIVITY IN β -AMINOALCOHOL-CATALYZED ADDITION OF DIETHYLZINC TO ALDEHYDES


Koreichi Kimura, Eiji Sugiyama, Tadao Ishizuka and Takehisa Kunieda*


Faculty of Pharmaceutical Sciences, Kumamoto University Oe-honmachi, Kumamoto 862, Japan.

Summary: β -Aminoalcohols sterically constrained by a dibenzobicyclo[2.2.2] ring system serve well as chiral catalysts in highly enantioselective additions of diethylzinc to aldehydes (up to 98% e.e.). A dramatic reversal of the enantioselectivity is observed when the *N*,*N*-dimethyl (2a) and *N*-sulfonyl- β -aminoalcohols (2c-2e) are used as catalysts.

There has been an explosive growth in research on catalytic asymmetric processes for carbon-carbon bond formations, and a great variety of strategies have proved to be successful in providing high levels of enantioselection.¹ Among such highly enantioselective reactions developed so far, nucleophilic addition of alkylmetals to carbonyl compounds in the presence of chiral ligands has been one of the most extensively explored.² Various types of chiral aminoalcohols² as well as diamines with C_2 -symmetry³ have been developed as excellent chiral ligands in the enantioselective catalytic alkylation of aldehydes with organozincs.²

In this paper we describe the use of 2-aminoalcohols conformationally fixed by bicyclo[2.2.2] and bicyclo[2.2.1] ring systems as chiral ligands in the alkylation of aldehydes with diethylzinc, and show that *opposite enantioselectivities* are observed when catalytic amounts of the 2-dimethylamino (**2a**) and 2-sulfonamidoalcohols (**2c**) are used (Scheme 1).

The sterically constrained 2-aminoalcohols examined as catalysts in this study, *i.e.*, *N*-substituted 1,2-(9,10-dihydro-9,10-anthraceno) (2) and 1,2-(1,3-cyclopentano)-2-aminoethanols (4),⁴ are readily obtainable from the chiral 4,5-disubstituted-2-oxazolidinones ,1 ($R^1=H$) and 3 ($R^1=H$), of which both enantiomers were recently introduced as the highly promising chiral auxiliaries in Evans' asymmetric strategy.⁵

Thus, ring-opening of the *N*-methyl, *N*-tosyl, *N*-mesyl and *N*-triflyl (trifluoromethanesulfonyl)-2-oxazolidinones (**1b-1e** and **3b**) smoothly proceeded under hydrolytic conditions with barium hydroxide and cesium carbonate to give quantitative yields of the *N*-methyl (**2b**) and the corresponding *N*-sulfonyl-2-aminoalcohols (**2c-2e** and **4b**). The *N*,*N*-dimethyl derivatives (**2a** and **4a**) were readily obtained by reductive cleavage of the *N*-methyl-2-oxazolidinones with LiAlH₄ or dimethylation of the parent aminoalcohols. All of the chiral aminoalcohols thus obtained are easy to handle, due to their high crystallinity. The chiral β-aminoalcohols of conformational rigidity have a precedent of camphor-derived auxiliaries.^{2,6}

Alkylations of both aromatic and aliphatic aldehydes with organozincs catalyzed by such aminoalcohol derivatives proceeded with satisfactory enantioselectivity of up to 98% e.e., as indicated in the Table. When benzaldehyde was treated with diethylzinc (1.2 mol equiv.) in toluene at room temperature in the presence of a catalytic amounts (0.2 mol equiv.) of (1S,2R)-N,N-dimethylanthraceno-2-aminoethanol (2a), (S)-1-phenylpropanol was produced with 96% e.e. in 91% yield. The additions catalyzed by the N-monomethyl aminoalcohols (2b) gave much lower enantioselectivity of only 20% e.e. and low yield (22%) under the same conditions, as might be anticipated.² The use of the N-sulfonyl-aminoalcohols (2c-2e) surprisingly resulted in the opposite enantiofacial selection, and among the examined N-sulfonyl catalysts the N-triflyl derivative (2c) gave the highest selectivity (98% e.e.) of the antipodal (R)-1-phenylpropanol.⁷ Similar reversal in the enantioselectivity were obtained in the alkylations of aliphatic aldehyde such as heptanal catalyzed by N,N-dimethyl (2a) and N-triflyl (2c) auxiliaries.

On the other hand, in the reactions catalyzed by the cyclopentano-aminoalcohols (4), such a reversal in the enantioselectivity was not observed and the N,N-dimethyl (4a) and N-tosyl derivatives (4b) gave 97% e.e. and 79% e.e. of (S)-1-phenylpropanol, respectively. As shown in the

р Р Н	+ ZnEt ₂	chiral β-aminoalcohol toluene r.t., 24 hr	B R (S) Et 5 a	+ R (R) Et
Entry	R	β-aminoalcohol	Yield (%) ^{a)}	5a (<i>S</i>) : 5b (<i>R</i>) ^{b)}
1	Ph-	2 a	91	98 : 2
2	CH ₃ (CH ₂₎₅ -	2 a	81	94 : 6 ^{c)}
3	Ph-	2 b	22	60 : 40
4	Ph-	2 c	80	1 : 99
5	CH3(CH2)5-	2 c	70	17 : 83 ^{c)}
6	Ph-	2 d	63	6 : 94
7	Ph-	2 e	60	11 : 89
8	Ph-	4 a	96	97 : 3
9	Ph-	4 b	69	79 : 21
10	Ph-	(1 <i>S</i> ,2 <i>R</i>)-N-tosyl norephedrine	25	46 : 54
11	Ph-	(1S,2R)-N,N-dibutyl norephedrine	100	95 <u>;</u> 5d)

Table. Enantioselective Alkylation of Aldehydes with Diethylzinc Catalyzed by Chiral β-Aminoalcohols.

a) Isolated yields.

b) Determined by direct HPLC analysis using a chiral column (DAICEL CHIRALCEL OD).

c) Determined by HPLC analysis of the corresponding (R)-1-(1-naphthyl)ethyl carbamate.

d) Taken from reference 8.

table for comparison, the *N*-tosylnorephedrine was not effective for the asymmetric induction, while the *N*,*N*-dibutyl derivative was reported to be quite fruitful.⁸

Elucidation of the mechanism of the enantioselectivity reversal will require further stud- y.2a,2b,9

In conclusion, we present a new class of aminoalcohols (2a and 2c) which serve as excellent catalysts for the selective preparation of each of the enantiomeric alcohols with 96-98% e.e. in the addition of diethylzinc to aldehydes.

References and Notes

- For a review, see a) Tomioka, K. Synthesis, 1990, 544.
 b) Narasaka, K. Synthesis, 1991, 1.
- 2) For a review, see a) Noyori, R. and Kitamura, M. Angew.Chem.Int.Ed.Engl., 28, 60 (1989). b) Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M.; Oguni, N.; Hayashi, M.; Kaneko, T. and Matsuda, Y. J. Organomet.Chem., 382, 19 (1990). For a recent example see, c) Niwa, S. and Soai, K. J. Chem. Soc. Perkin Trans. 1, 1991, 2717. d) Soai, K.; Hori, H. and Kawahara, M. Tetrahedron Asymmetry, 2(4),253 (1991). e) Soai, K. and Kawase, Y. *ibid*, 2(8), 781 (1991). f) Soai, K. and Watanabe, M. *ibid*, 2(2). 97 (1991). g) Niwa, S.; Hatanaka, T. and Soai, K. J. Chem. Soc. Perkin Trans. 1, 1991. h) Soai, K.; Yokoyama, S. and Hayasaka, T. J. Org. Chem., 56, 4264 (1991). i) 2025. Soai, K.; Okudo, M. and Okamoto, M., Tetrahedron Lett., 32, 95 (1991). j) Hayashi, M.; Miwata, H. and Oguni, N. J. Chem. Soc. Perkin Trans. 1, 1991, 1167. k) Hayashi, M.; Kaneko, T. and Oguni, N. *ibid*, **1991**, 25. Uemura, M.; Miyake, R. and Hayashi, Y. J. Chem. Soc. Chem. Commun., 1991, 1696. m) Watanabe, M.; Araki, S.; Butsugan, Y. and Uemura, M. J. Org. Chem., 56, 2218, (1991). n) Istuno, S.; Yanaka, H.; Hachisuka, C. and Ito, K. J. Chem. Soc. Perkin Trans. 1, 1991, 1341. 0) Oppolzer, W. and Radinov, R.N., Tetrahedron Lett, 32, 5777 (1991).
- 3) a) Yoshioka, M.; Kawakita, T. and Ohno, M. *Tetrahedron Lett.*, **30**, 1657 (1989).
 b) Takahashi, H.; Kawakita, T. and Ohno, M. *ibid*, **30**, 7095 (1989).
- 4) **2a** : mp. 195°C (from EtOH), [α]_D= -32.1° (c.1.0, CHCl₃).
 - **2b** : mp. 164°C (from EtOH), $[\alpha]_{D}$ = +16.5° (c.1.0, MeOH).
 - **2c** : mp. 81°C (from CCl₄), $[\alpha]_{D} = -7.4^{\circ}$ (c.1.0, CHCl₃).
 - **2d** : mp. 200°C (from EtOH), $[\alpha]_{D}$ = -35.1° (c.1.0, CHCl₃).
 - **2e** : mp. 178°C (from MeOH), [α]_D= +8.2° (c.1.0, CHCl₃).
 - **4a** : mp. 85°C (from hexane), [α]_D= -7.0° (c.1.0, CHCl₃).
 - **4b** : mp. 116°C (from EtOH), $[\alpha]_D = -47.0^{\circ}$ (c.1.0, EtOH).
- 5) Matsunaga, H.; Kimura, K.; Ishizuka, T.; Haratake, M. and Kunieda, T. *Tetrahedron Lett.*, **32**, 7715 (1991).
- 6) Kitamura, M.; Suga, S.; Kawai, K. and Noyori, R. J. Am. Chem. Soc., 108, 6071 (1986).
- In the enantioselective alkylations catalyzed by chiral sec-alkylamino-tert-alcohols and tertalkylamino-tert-alcohols, Soai et. al. reported the reversal of the low enantioselectivity (22% e.e.).
 Soai, K.; Watanabe, M.; Yamamoto, A. and Yamasita, T. J. Molecular Catalysis, 64, L27-L-30 (1991).
- 8) Soai, K. ; Yokoyama, S. ; Ebihara, K. and Hayasaka, T. J.Chem.Soc.Chem.Commun., 1987, 1690.
- 9) cf. Kitamura, M.; Okada, S.; Suga, S. and Noyori, R. J. Am. Chem. Soc., 111,4028 (1989).

(Received in Japan 17 February 1992)