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Abstract

The synthesis of Metoprolol base was studied using Raman spectroscopy with a 785-nm laser, optical fibres, a holographic transmission
grating, confocal optics and a charge-coupled device (CCD) detector. The reaction mixture was heated according to a temperature
gradient and spectra of the reaction mixture were obtained by focusing the laser beam through ordinary reaction flasks. Because of
overlapping bands, multivariate techniques such as principal components analysis (PCA) and partial least-squares projections to latent
structures (PLS) were used in the evaluation of the obtained spectra. The use of PCA or PLS against time does not require any calibration
samples and a quantitative calibration is not necessary in order to monitor the reaction. A method for reaction endpoint determination,
based on euclidean distances in the score space, is presented. The use of multivariate batch control charts have been demonstrated and a
number of problems and solutions regarding the sample presentation have been discussed. The effect of spectral pretreatment on the
multivariate results is shown and discussed. The monitoring results show that the time to produce Metoprolol base could be reduced.
 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction record several Raman spectra simultaneously (Vess and
Angel, 1992; Marteau et al., 1994a,b; Pelletier et al.,

The use of new and rapid instrumentation in Raman 1996). Optical fibres also allow remote monitoring (Far-
spectroscopy has made the technique suitable for process quharson and Simpson, 1992; Purcell et al., 1992; Martin
monitoring. A number of liquid and solid-state reactions et al., 1993; Marteau et al., 1995) of processes in hostile
and processes have been studied (Barrie and Aitchison, environments.
1992; Larsen et al., 1993; Vorsina et al., 1995; Nelson and Principal components analysis (PCA) and partial least-
Scranton, 1996; Rice et al., 1996; Schoppelrei et al., 1996; squares /projections to latent structures (PLS) are common
van Staden et al., 1996) by Raman spectroscopy using multivariate methods when using near infrared spectros-
laser wavelengths ranging from 496 to 1064 nm. The use copy (NIR), but in Raman spectroscopy multivariate
of short wavelengths may cause problems with fluores- methods are not used to the same extent as in NIR. In
cence, and measurements in the near infrared region can be Raman spectroscopy the bands often are sharp and selec-
a problem when studying heated processes (Schoppelrei et tive, while NIR spectra typically have broad, unselective
al., 1996). bands. This is the main reason why it is easier to use

Optical fibres (Chong et al., 1992; Vickers and Mann, univariate methods in Raman spectroscopy than in NIR. In
1992; Wang et al., 1992; Ford et al., 1994; Nave et al., a recent paper, we showed that in a simple case with
1995; Al-Khanbashi et al., 1996) in combination with selective peaks, Raman spectroscopy in combination with
charge-coupled device (CCD) detectors can be used to multivariate methods such as PCA and PLS will give the

same results as Raman spectroscopy and univariate meth-
ods based on peak heights or peak areas (Svensson et al.,*Corresponding author. Tel.: 146-31-776-1658; fax: 146-31-776-
1999). However, when several large and similar molecules3813.

E-mail address: mats.josefson@astrazeneca.com (M. Josefson) are used in a reaction mixture, the Raman spectrum
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becomes more complex, and the Raman bands will overlap centering was performed before applying principal com-
each other. In such cases, it is preferable to use multi- ponent analysis or partial least-squares regression.
variate methods like PCA and PLS, because they do not One advantage with SNV is that there is no need to store
require selective bands. When multivariate methods are any values for future transformations, as is the case with
used in Raman spectroscopy, they are mainly used for multiplicative signal correction (MSC) (Dhanoa et al.,
quantitative calibration purposes (Seasholtz et al., 1989; 1994).
Williams et al., 1990; Aust et al., 1997; Cooper et al.,
1997; Delgado-Lopez, 1997; Shimoyama et al., 1997). 2.2. Principal components analysis (PCA)

In the pharmaceutical industry almost all processes are
performed as batch processes, therefore multivariate meth- Principal components analysis is a projection method
ods for batch process monitoring and control are im- which projects, in this case, spectra as points in a space
portant. Multivariate methods based on unfolding of the with a small number of principal components. The princi-
three-dimensional matrixes obtained in batch process pal components are extracted from the X matrix in such a
monitoring have recently been developed (Nomikos and way that each principal component (PC) explains as much

¨MacGregor, 1994, 1995a,b; Rannar et al., 1998; Wold et of the variation in X as possible. In PCA, one PC consists
al., 1998). of two vectors, one score vector t and one loading vector

The objective of this paper is to show that Raman p. The score vector contains a score value for each
spectroscopy in combination with chemometric methods spectrum, which tells how the spectrum is related to the
such as PCA and PLS can be used to monitor a process, in other spectra in that particular PC. The loading vectors pa

this case the synthesis of Metoprolol base, without the show spectral features, where high absolute values indicate
need for quantitative calibrations. a large influence on the PCA model.

The X matrix can be expressed as

9 9 9X 5 t p 1 t p 1 . . . 1 t p 1 E (2)1 1 2 2 A A
2. Theoretical methods

where A denotes the number of PCs extracted and E is a
residual matrix with the same number of rows and columnsIn the following sections, the matrix X is made up from
as X.n rows and k columns, where each row represents a

The number of PCs to use can be determined by, forspectrum and each column represents one wavenumber (or
example, cross-validation (Wold, 1978). In process ana-wavelength). When partial least-squares regression (PLS)
lytical applications, such as synthesis monitoring, theis used, a vector containing the local batch time is used as
number of principal components usually is much smallery. The X matrix and the y vector have the same number of
than the number of spectra (n) and variables (k).rows, which means that for each time in y a spectrum in X

was measured.
2.3. Partial least-squares /projection to latent structures
(PLS)2.1. Spectral pretreatment

Partial least-squares (PLS) (Martens and Næs, 1989) isThe multivariate analysis was performed on spectra
like PCA a projection method. The difference is that PLSsubjected to the standard normal variate transform (SNV)
is a regression method where a loading weight vector w is(Barnes et al., 1989; Dhanoa et al., 1994). The SNV
used to extract as much variation in X as possible, undertransform is a preprocessing technique used to correct
the constraint that the variation extracted from X isspectra for additive and multiplicative effects. The trans-
correlated with the variation in y. This can be expressed asformation is done on each spectrum individually by

9X ysubtracting the spectrum mean and scaling with the a21 a21
]]]]w 5 (3)aspectrum standard deviation according to 9iX y ia21 a21

](x 2x)i t 5 X w (4)a a21 a]]]]x 5 (1)]]]i,SNV k
2] 9t ya a21O(x 2x)i ]]c 5 (5)ai51 9t ta a]]]œ k 2 1

y 5 c t 1 c t 1 . . . 1 c tA 1 f (6)1 1 2 2 Awhere x is the transformed Raman intensity fori,SNV

¯ where a denotes PLS component number a and f denoteswavenumber x , and x is the mean intensity of all the ki

the non-modelled variation in y. The score vector t can bewavenumbers in the spectrum. Eq. (1) shall be repeated for a

interpreted in the same way as in PCA. The loading weightall k wavenumbers in the spectrum. Effectively, the
vectors w show the spectral features in X that bestoperation is centering and normalizing the rows. In addi- a

correlate with y. High absolute values indicate a largetion to the SNV transformation the standard column
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influence on the PLS-model. In this paper, time is used as 2.4. Batch control charts
y.

The number of PLS components to use can be estimated When a batch process is monitored, a number of
by cross-validation or an independent test set. When using variables are measured at different times until the process
PLS in batch control charts it is recommended to extract as has stopped. Then the same variables are measured for
many PLS components as necessary to explain at least every batch produced. The situation is illustrated in Fig.
85% of the X matrix (Umetri, 1998). 1A.

Fig. 1. (A) Batch data organized in a 3D matrix unfolded to a 2D matrix with batches placed under each other and local batch time increasing within each
batch. Variables in columns. (B) Mean score value computed for each component individually at each local batch time, after PCA or PLS. Control charts
for scores and distances to the X model (DmodX) for each PCA/PLS component plotted with mean63 S.D.
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One way to construct multivariate statistical process Systems (Ann Arbor, MI, USA) was used in all experi-
control (MSPC) charts for batch processes is to first unfold ments in this paper. This spectrometer is equipped with a
the 3D matrix. The unfolding can be done by placing the charge-coupled device (CCD) detector, which allows a full
batches under each other according to Fig. 1A and then Raman spectrum to be collected in a few seconds, a
perform PCA or PLS on the unfolded matrix. When PLS is holographic transmission grating, an optical fibre, and
used, the local batch time or some kind of batch maturity confocal optics which means that a Raman spectrum can
variable, is used as a y vector. be measured at different depths in a sample, or through

The next step is to compute the mean score value for ordinary glassware. The laser used was a 250-mW diode
each PCA or PLS component, at all local batch times. The laser at 785 nm with adjustable laser power. In the present
mean is computed over all batches. This step is illustrated experiments, a laser power of approximately 100 mW was
in Fig. 1B. The standard deviation of the score values is used. Spectra were collected between Raman shift 0 and

21 21computed according to the same principle as the mean. 1959 cm , but only the part between 250 and 1959 cm
The control limits are computed as the mean score was used in the evaluation of the data.

values 6 a number of standard deviations, typically 2 or 3.
This means that there is one control chart for each

3.2. Experimental set-upprincipal or PLS component, as shown in Fig. 1B.
The residuals from the PCA or PLS calculations can be

An ordinary round-bottom flask with three bottlenecksused to calculate the distance for a certain observation (all
was equipped with a reflux condenser, a temperaturevariables measured at a specific time), to the model. The
probe, and a propeller. The reaction vessel was then placeddistance-to-model (DmodX) for a sample (spectrum) i
in a thermostat bath and a stirring motor was attached toincluded in the calibration can be computed according to
the propeller.]]k The laser beam from the Raman instrument was focused2O e ij on the reaction mixture, through the glass wall of the

j51
]]DmodX 5 ? F (7) reaction vessel. The Raman probe head and the reactioni œk 2 A

vessel holder were kept in fixed positions during the design]]]n experiments, in order to avoid refocusing before the start]]]F 5 (8)œn 2 A 2 1 of each Raman measurement series.
where F is a correction factor used to take into account
that the calibration samples have influenced the model. In 3.3. Software
Eqs. (7) and (8), A is the number of PCA/PLS com-
ponents used in the batch process model, k is the number The HoloGRAMS ver. 3.0 software (Kaiser Optical
of variables in the samples (spectra), and n is the number Systems) was used to control the spectrometer. Spectra
of calibration samples. The DmodX control chart is were exported to GRAMS/386 ver. 3.01 (Galactic Indus-
constructed by first calculating the mean DmodX over all tries, Salem, NH, USA). The Grams file format was then
batches at each local batch time. Second, the standard used for import to The Unscrambler ver. 6.11b (Camo AS,
deviation of DmodX at each local batch time is computed. Trondheim, Norway), MATLAB 5.2 (The Mathworks,
The last step is to compute the control limit as the mean Natick, MA, USA) and to SIMCA-P ver. 7.01 (Umetrics
DmodX values 1 a number of standard deviations. This ˚AB, Umea, Sweden) for calculations. Modde 4.0 (Umetrics
means that DmodX control charts are constructed in the ˚AB, Umea, Sweden) was used for evaluation of the
same way as for the scores (Fig. 1B), but with an upper

experimental design.
limit only. For a new observation i, the distance to the
model is computed as in Eq. (7), but without the correction

3.4. Chemicalsfactor F.
This way of unfolding the X matrix and the use of

Isopropanol (99.8%, Merck, Darmstadt, Germany), iso-separate control charts for scores and DmodX in multi-
propylamine (.99.5%, Fluka Chemie, Buchs, Switzer-variate batch control and monitoring was recently de-
land; 99%, Aldrich, Milwaukee, WI, USA; or 98–100%,veloped by Wold et al. (1998). Classification and de-
Kebo, Stockholm, Sweden) and methoxy ethyl epoxytermination of final quality of a product was discussed by

¨ ¨propoxy benzene (MEEPB) (Astra, Sodertalje, Sweden)Thelin et al. (1995).
were used in this study.

3. Experimental 3.5. Synthesis

3.1. Raman spectrometer The synthesis of Metoprolol base was performed by
mixing MEEPB and isopropylamine in isopropanol and

A HoloProbe Raman spectrometer from Kaiser Optical then heat the reaction mixture applying a temperature
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Table 1
aExperimental design for the Metoprolol base synthesis

Expt. Propanol MEEPB Amine Gradient Estimated
bendpoint

C 2 2 2 Slow 250
J 1 2 2 Fast 140
I 2 1 2 Fast 155
F 1 1 2 Slow 250
E 2 2 1 Fast 150
K 1 2 1 Slow 245
G 2 1 1 Slow 260Fig. 2. Molecular structures for the synthesis of Metoprolol base.
A 1 1 1 Fast 160
D 0 0 0 Fast 145
H 0 0 0 Fast 160

gradient. The reaction scheme for the Metoprolol base L 0 0 0 Fast 155
synthesis is shown in Fig. 2. B 2 2 2 Fast 150

a High and low levels indicated with 1 and 2, respectively.
b Estimated endpoint in minutes.3.6. Experimental procedure

According to the experimental design below, isopropan-
4. Results and discussion

ol and MEEPB were mixed in the reaction vessel and
cooled to approximately 108C in order to slow down the

4.1. Spectra
initial reaction rate and to simulate real synthesis con-
ditions. According to the design, isopropylamine was

In Fig. 3, spectra from MEEPB, Metoprolol base,
added to the isopropanol /MEEPB mixture when the

isopropanol and isopropylamine are shown. As can be seen
temperature in the reaction vessel was stable. After addi-

from the spectra, there are overlapping bands in the whole
tion of isopropylamine the reaction vessel was closed, and

spectral region. In Fig. 4, spectra from the reaction mixture
a black curtain was placed over the fume hood in order to

are shown as the reaction proceeds. Decreasing spectral
prevent changing daylight to influence the Raman spectra.

bands can be observed at 765, 1125–1175 and 1225–1275
Next, the Raman measurements and the temperature 21 21cm . At 885 cm one increasing band can be observed.

measurements were started. The temperature was measured
By subtracting the first spectrum from the last spectrum,

every minute, and every fifth minute a Raman spectrum
the changing spectral features can be seen and compared to

was collected. The exposure time was 5 s for each
the pure spectra of Metoprolol base and MEEPB, as in Fig.

spectrum.
5. The comparison to pure spectra is difficult due to

After the first spectrum was measured, the temperature
overlapping bands and peak shifts in the reaction mixture.

in the thermostat bath was adjusted according to the
Because of the broad and overlapping bands in the

experimental design. Measurements were done for 4 h
spectra it is difficult to use univariate methods such as

when using a fast temperature gradient and for 5 h when
peak height and peak area determinations to follow the

using a slow temperature gradient.
reaction. However, if no other methods are available it
may be possible to subtract the first spectrum from all

3.7. Experimental design other spectra, and get sharp bands to monitor. One
drawback with this method is that it may be hard to find

An introduction to experimental design can be found bands that are unaffected by band shifts and to find a stable
elsewhere (Box et al., 1978). The amount of isopropanol, baseline to compare with.
isopropylamine and MEEPB was adjusted according to the

4212 fractional factorial experimental design shown in
Table 1. The experiments were performed in the order 4.2. Multivariate evaluation of data based on single
from A to L. Experiment B was added to the design in experiments
order to check the monitoring conditions for reactions with
all factors, except the temperature gradient, set to low The results from PCA and PLS are quite similar and
levels. Two different temperature gradients were used, one therefore figures are only shown for PCA data in this
fast and one slow. The fast temperature gradient was section. Two reactions will be shown, one with fast and
achieved by changing the temperature in the thermostat one with slow temperature gradient.
bath (25, 40, 55, approximately 688C), with a step every Before further computations, the spectra were normal-

2115 min. The same temperatures were used to produce the ized with SNV. The 250–1959-cm region in the Raman
slow temperature gradient, but the temperature was spectra were used in the SNV calculations. This part of the
changed every hour instead of every 15 min. spectra was also used for further evaluation. PCA or PLS
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Fig. 3. From top to bottom: spectrum of pure Metoprolol base, MEEPB, isopropylamine and isopropanol (SNV-treated spectra).

2 2 2 2was then applied to evaluate data from single experiments. R , Q and by checking the loading plots. R and Q do
In the PLS calculations the batch time was used as y. not improve after two components and the loading plot for

In both the PCA and PLS results, after two PCA or PLS the third component mainly contains high frequency noise.
2components R was between 95 and 98% for the spectral This is reasonable since the spectra mainly contain in-

matrix in all experiments, except for two experiments formation about two things, the reaction and the tempera-
where it was between 89 and 91%. The number of ture gradient. The temperature gradient and the scores for
components to use was determined by looking at both the the first two components for one fast (A) and one slow (F)

Fig. 4. Spectra from the reaction mixture after 0, 40, 60 and 240 min, respectively. Increasing and decreasing bands indicated by arrows.
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Fig. 5. Difference between the first and last spectrum for reaction A. Main spectral features changing during the reaction.

reaction, where A and F refer to order in the experimental In the score trace for the second PC, changes in the
design (Table 1), are shown in Fig. 6A and 6B, respective- temperature in combination with the reaction progress can
ly. be observed. In the fast gradient case, the score values

The score trace for the first principal component (PC) increase as the temperature increases, and as the tempera-
shows the progress of the reaction. In the fast temperature ture becomes stable, the change in the trace is not due to
gradient case, the reaction is slow in the beginning when change in temperature, but must be due to changes in the
the temperature is low and as the temperature increases, reaction mixture.
the reaction rate increases. The concentration change has The slow gradient score trace for the second PC (Fig.
its maximum where the slope of the score trace is largest. 6B) shows a similar pattern as in the case with the fast
When the difference between two subsequent points in the gradient. The difference is that the pattern is repeated four
score space is small, the reaction endpoint is reached. This times, because of the way the temperature was changed.
means that when the score traces for the first components For the fast gradient experiment, the loading vectors for
are approaching a constant level, the reaction is completed. the first and second PC are shown in Fig. 7A and 7B,
The reaction endpoint was estimated as described below respectively. The loading vector for the first PC is difficult
using two PCA components and is shown for all experi- to compare to pure spectra due to the overlapping bands.
ments in the design in Table 1. However, a comparison between a spectrum computed as

An increase in the score trace for the first principal the difference between the first spectrum and the last
component may be observed at long reaction time in Fig. spectrum in the reaction (Fig. 5), and the loadings for the
6A. However, higher yield at longer reaction time may first PC shows a strong similarity. Because the difference
lead to higher amount of impurities. Moreover, a possible spectrum mainly reflects the synthesis of Metoprolol base,
increase in the score trace may be due to evaporation of and the loading vector in the first PC is similar to this
solvent. difference, the score trace for the first PC shows how the

In the case with a slow temperature gradient (Fig. 6B), reaction proceeds. The loading vector seen for PC 2 in Fig.
at least three different reaction rates can be observed. The 7B may tentatively be assigned to contain contributions
rate changes are seen as relatively sharp changes in the from band broadening and shifts brought about by the
slope of the score trace. The reaction rate is slow at low temperature change during the reaction.
temperatures and increases at higher temperatures. This is Because the loadings for the slow gradient experiment
verified as the slope changes in the score trace for the first are very similar to the loadings in Fig. 7, they are not
PC occur exactly as the temperature increases. shown. The loading and score plots for all experiments in
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Fig. 6. Temperature in the reaction vessel (1) and score traces for the first (h) and second (m) principal components. (A) Experiment A (fast) and (B)
experiment F (slow temperature gradient). Abscissa, time (min); left ordinate, scores for PC 1 and 2; right ordinate, temperature in reaction vessel (8C).
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Fig. 7. Loadings for: (A) first PCA component, and (B) second PCA component, for reaction A.
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the design are similar to those shown for the fast experi- PCA scores, but the approach presented will work equally
ment A and the slow experiment F. well with PLS scores. This endpoint determination can

also be performed by updating the PCA or PLS model for
each new spectrum measured. In the case with an updating4.3. Reaction endpoint determination
model the approach becomes more sensitive to outliers.
The results from the endpoint determinations are shown inThe reaction endpoint can be determined manually by
Table 1.looking at score plots for a number of PCA and PLS

It shall be noted that Raman spectroscopy has to becomponents. When the reaction score trace becomes stable
complemented by another analytical method for determi-and the distance between a number of subsequent spectra
nation of impurities (detection limit |0.1–1%). In this casebecomes small the reaction has reached its endpoint.
it is also necessary with further validation of the endpointThe endpoint determination described above can be
time results found, since no reference measurements fordone in a more objective way by calculation of the
yield and purities were performed.Euclidean distance between subsequent points, and when

In laboratory experiments similar to the ones performedthe distance has reached the noise level the reaction has
in the present work, the yield of the synthesis was found toreached its endpoint. These distances correspond to a
be above 90%, with purity above 99%.multivariate measure of the reaction rate in a space

spanned by the selected number of PCA or PLS com-
ponents. In this paper the endpoint was determined in the

4.4. Evaluation of the experimental designfollowing way.
First a PCA was performed on reaction L. Next, this

One of the objectives with this study was to investigatemodel was applied on all spectra in each individual
if it was possible to decrease the time for the synthesis ofreaction. For two PCA components, the scores (s ) for eachi
Metoprolol base and if different amounts of MEEPB,individual spectrum (i) were used to calculate the Eucli-
isopropylamine and isopropanol would influence the re-dean distance between spectra according to
action time. The design was evaluated in two different

s 5 t t  (9)i 1,i 2,i ways using multiple linear regression (MLR) with the
421reaction endpoint time as y. First, the whole 2 fractional]]]]]] 2d 5 (s 2 s )(s 2 s )9 (10) factorial design in Table 1 was evaluated (R 50.99 andi œ i 21 i i21

2Q 50.99). In this type of design the main terms are
where t and t are the scores for spectrum i in PCA1,i 2,i confounded with three variable interaction terms and the
components 1 and 2, respectively, d is the distancei two variable interaction terms are confounded with each
between spectrum i and spectrum i21 in the score space,

other. In this first case where both slow and fast tempera-
s is a row vector containing the scores for spectrum i andi ture gradient experiments were used in the evaluation of
s contains the scores for spectrum i21. In order toi21 the design, the only significant factors were the two main
obtain a more stable distance measure, a moving average

terms, amount of MEEPB and the temperature gradient.
filter was applied to the computed distances according to

The sign of the MEEPB coefficient was positive, which
4 means that an increase in amount of MEEPB will lead toO d an increase in reaction endpoint time. A slow temperaturei2j

j50 gradient will also increase the reaction endpoint time. This]]D 5 (11)i 5 can also be seen by studying Table 1. The fact that
temperature is important for the reaction can also bewhere D is the average distance for spectrum i. Thei

observed in Fig. 6A,B. In Fig. 6B it is obvious that thederivative of these average distances was calculated as the
reaction rate changes with temperature. This shows that thedifference between successive distances. The derivative
temperature is important for the reaction endpoint, andwas then smoothed by a moving average filter similar to
therefore must be well controlled.Eq. (11). In order to keep a reasonably high resolution in

The actual process conditions are more similar to thetime it was decided to use only five points for the
fast temperature gradient case, and therefore a secondsmoothing. Because of the small number of points the
evaluation was performed using only the fast temperatureSavitsky–Golay derivation was less stable than the moving

321experiments. This results in a 2 fractional factorialaverage approach and therefore the latter was used in this
design with three centerpoints and one additional experi-case.

321ment (B). In 2 fractional factorial designs the mainThe endpoint limit was considered reached when the
terms are confounded with the two variable interactionabsolute value of the derivative was below 0.005, the
terms. Using this design it is possible to determine if theretemperature gradient had finished and the average distance
are significant factors influencing the endpoint time of thebetween points was low. However, the limits can be
reaction. In this second case when the design was evalu-adjusted depending on the problem. The above description
ated with only fast temperature gradients, no significantof the endpoint determinations was performed by using
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factors were found. This, in combination with the low after the other experiments, and another reaction flask was
2 2model statistics (R 50.58 and Q 50.16), indicates that used. The glass in the flask was not homogeneous, and

the endpoint time for the reaction is robust against changes hence the spectra became somewhat different from the
within the design. previously measured ones. The use of a new batch of

It can also be noted that if other responses such as yield MEEPB, with a possible different purity, may also have
and purity had been present, the reaction endpoint could contributed to the difference in the spectra. The result of
have been used as an uncontrolled factor in the experimen- this was that all new centerpoints were on or outside the
tal design. However, in this case no further responses were control limits in the score control charts and definitely
measured. outside the control limits in the distance-to-model chart.

Problems which are related to the sample presentation
4.5. Use of multivariate batch control charts (laser focus, vessel) should be possible to avoid in future

experiments. One way to avoid problems with different
The centerpoint experiments D, H and L were used reaction vessels would be to use some kind of immersion

together in one model for the multivariate batch control probe directly in the solution instead of measuring through
charts. The computations were performed using PLS with the glass wall. Another way to deal with this problem
time as y, and the control limits were determined as would be to take the difference between all spectra and the
described in the theoretical methods section. The number first or an average of the first few spectra measured. This

2 2of components was determined using R , Q and by treatment should remove the differences that depend on
inspecting loading plots. The criterion that at least 85% of different reaction vessels and different focus for each
X shall be explained was also used (see Section 2.3). The experiment. However, by using these differences it is not

2PLS model was based on three PLS components and R possible to tell if a new starting solution is different from
was 0.97 for the X matrix and 0.74 for y. One additional previous starting solutions.
component can be expected in this case compared to the
evaluation of a single reaction. In this case the third 4.6. Effects of spectral preprocessing
component explain the difference between the three center-
points. The SNV transform was used on all spectra in the above

The PLS model described above was used to follow the evaluation. In addition, the following spectral preproces-
evolution of the other reactions in the design. The control sing methods were tested: multiplicative signal correction
charts for the two first PLS components and the distance to (MSC), range normalisation, first and second derivatives.
the model for the fast corner experiments A, B, E, I and J The use of MSC or normalisation for spectral preproces-
are shown in Fig. 8A–C. In Fig. 8, 3 S.D. around the mean sing gave similar score traces as with SNV, but the first and
are shown. The control charts for PLS component 1 and second derivatives gave somewhat different results.
DmodX (Fig. 8A,C) show that all fast experiments at the The first PC score traces in Fig. 10A,B are based on
corner points are outside the control limits in one or both second derivatives treated spectra from experiments A and
charts. This verifies that deviating experimental conditions F, respectively. These figures can be compared to Fig.
are detected in the batch control charts. 6A,B, which contain the same reactions but with SNV

In Fig. 9 the first PLS component control chart for the treated spectra. The score traces for second derivatives
slow experiments C, F, G and K is shown. The results treated spectra follow the temperature gradient in both the
show that by looking at the first component, in this case, it fast and the slow temperature gradient cases, while the
is possible to detect deviations in reaction speed. If this score traces for SNV treated spectra do not. The effect was
kind of deviations can be detected before the process is the same for first derivatives but not as clear as for second
finished it should be possible for an operator to correct for derivatives. The score traces for the second PC behave in a
them and get the process on the right track again. similar way for both second derivatives and SNV treated

An alternative way to introduce limits for a continuous spectra. This indicates that if a temperature gradient is
process is to use the Hotellings T2 statistics to set the present during a reaction or other process, the use of
limits for allowed score values. In that case a common preprocessing methods such as SNV, MSC and normalisa-
limit is set for all types of changes during the whole batch tion should be preferred over first and second derivatives,
reaction, and will then be independent of the batch time. if the main objective is to get a good picture of how the
For a batch reaction, this type of time independent limits is reaction proceeds. However, this does not mean that first
less sensitive when small changes in the batch trace occur. and second derivatives automatically give different results

As described in the experimental section, the spectra compared to the other preprocessing methods, it only
were measured directly through the glass wall of the means that the information in the data is placed in different
reaction vessel. One problem with this way of measuring PCs or that the information is distributed over several PCs.
the Raman spectra became clear when the batch control The sensitivity of second derivatives spectra to temperature
charts were used and new centerpoint reactions were changes may be due to changes in band shapes and
performed. The new centerpoints were made several weeks positions with temperature. The use of SNV may be seen
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Fig. 8. Batch control charts for the reactions with fast temperature gradient: (A) first PLS component, (B) second PLS component and (C) distances to the
X model (DmodX). Batch control model based on centerpoint reactions D, H and L. Reactions A (^), B (3), E (h), I (s), and J (1) shown in the
control charts are all corner point reactions. Mean63*S.D. indicated by lines. Centerpoint reactions not shown. Abscissa, time (min); ordinate, scores for
PC 1, 2 and DmodX, respectively.
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Fig. 9. Batch control chart for PLS component 1, for the reactions with slow temperature gradient (C (^), F (3), G (h) and K (s)). Mean63*S.D.
indicated by lines. Batch control model based on centerpoint reactions D, H and L. Centerpoint reactions not shown. Abscissa, time (min); ordinate, scores
for PC 1.

as a disadvantage because the score traces become more 5.2. Experimental design
similar, but this is not a problem, since the difference from
normal is clearly shown in the ‘distance-to-model’ plots The results from the experimental design show that both
(Fig. 8C), i.e., the information is still present but trans- the temperature gradient and the amount of MEEPB have a
ferred from the model to the residuals. significant influence on the reaction endpoint time. How-

ever, when the design was evaluated for fast temperature
gradients only, no significant factors were found.

5. Conclusions

A calibration free method for monitoring of organic 5.3. Multivariate batch control charts
syntheses, using Raman spectroscopy and PCA or PLS has
been presented. The method does not require any quantita- The use of multivariate batch control charts has been
tive determinations of concentrations and is therefore fast demonstrated. A number of problems with the sample
and easy to use. It should be possible to use this method presentation used have to be solved before the control
even for unknown processes and reactions. charts can be used in a real situation. This can possibly be

done by using an immersion probe instead of measuring
5.1. Reaction endpoint determinations through the glass wall of the reaction vessel, thus avoiding

different focus for each new batch measured.
As part of the reaction monitoring, a method based on

Euclidean distances in the score space, to determine if the
reaction was finished, was presented. This method does not 5.4. Effects of spectral pretreatment on the results
rely on concentration determinations and can therefore be
useful also in unknown systems. Depending on the spectral pretreatment, the information

With further validation, the endpoint determination in the data may be located in different PCA or PLS
method could help decrease the reaction time without loss components or will be distributed over several compo-
in yield. Since no final product was isolated and tested for nents. Therefore, depending on the purpose or type of
yield and impurities, additional work must be performed in reaction or process to monitor, different preprocessing
order to verify the results obtained. The test for impurities methods can be used. In this case the chemical variation
is important since Raman spectroscopy has a detection became more focused with SNV and MSC than with first
limit around 0.1–1%. and second derivatives.
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Fig. 10. Temperature in the reaction vessel (1) and score traces for the first (h) and second (m) principal components. PCA model based on second
derivative treated spectra. Compare to Fig. 6A,B. Abscissa, time (min); left ordinate, scores for PC 1 and 2; right ordinate, temperature in reaction vessel
(8C). (A) Experiment A (fast) and (B) experiment F (slow temperature gradient).
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