4-MeC₆H₄ # Facile and Convenient Synthetic Methods for Bis(trifluoroacetyl)ketene N,O-, N,S- and S,S-Acetals and 2,2-Bis(trifluoroacetyl)vinylamines and Sulfides Masaru Hojo,* Ryoichi Masuda, Etsuji Okada, Yasuyuki Mochizuki Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan Received 1 July 1991; revised 9 September 1991 Trifluoroacetylation of (trifluoroacetyl)ketene *N,O-*, *N,S-* and *S,S*-acetals [4-dialkylamino-4-ethoxy(methylthio)-1,1,1-trifluoro-3-buten-2-one and 4,4-bis(methylthio)-1,1,1-trifluoro-3-buten-2-one] gives the corresponding 1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-ones. 4-Amino- and 4-alkyl(aryl)thio-1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-one are obtained by O-N and O-S exchange reactions of 1,1,1-trifluoro-4-isobutoxy-3-(trifluoroacetyl)-3-buten-2-one with amines and thiols, respectively. In the course of our extensive investigations on the electrophilic¹⁻⁵ and nucleophilic⁶⁻⁹ substitutions at olefinic carbon atoms, it was found that ketene dithioacetals, 1 vinyl ethers, 2 and orthoacetates 3 react with trifluoroacetic anhydride quite easily to afford the corresponding β -trifluoroacetylated compounds in high yields, and that these acylated compounds cleanly undergo nucleopilic O-N, S-N and then even N-N exchange reactions^{7,8} with various nucleophiles under mild conditions. In order to extend and generalize these works, we have tried to synthesize bis(trifluoroacetyl)ketene N,O-, N,S- and S,S-acetals 5-7 and 2,2-bis(trifluoroacetyl)vinylamines 8 and sulfides 10. Recently, the development of new methodologies for the synthesis of various fluorine-containing heterocycles has received a growing interest, since many kinds of these compounds are now widely recognized as important organic materials exhibiting interesting functionalities for use in medicinal and agricultural science. 10-12 The title compounds 5-8 and 10 could serve as versatile and useful building blocks in the construction of functionalized heterocycles bearing both trifluoromethyl and trifluoroacetyl groups. With unexpected easiness, the bistrifluoroacetylation of (trifluoroacetyl)ketene N,O-, N,S- and S,S-acetals $1-3^{1.8}$ occurred cleanly at room temperature with the use of excess trifluoroacetic anhydride in the presence of pyridine to afford bis(trifluoroacetyl)ketene N,O-, N,S- and S,S-acetals 5-7, respectively, in more than 83% yield (Tables 1, 2). In the case of S,S-acetal 3 much longer reaction time (ca. 8 days) was required for completion of 4-NO₂C₆H₄ Η Н c MeNH₂ -(CH₂)₄- Me Table 1. Acylation of 1-3, 4a-c with Trifluoroacetic Anhydride | Sub-
strate | Prod-
uct | Y | Z | Amount
(CF ₃ CO) ₂ O | (equiv)
py | Time
(h) | |----------------|--------------|---------------------|-----|---|---------------|-------------| | 1 | 5 | Me ₂ N | EtO | 7.0 | 2.0 | 2 | | 2 | 6 | Et ₂ N | MeS | 4.0 | 2.0 | 17 | | 3 | 7 | MeS | MeS | 7.0 | 2.0 | 192 | | 4a | 8a | Me, N | H | 1.5 | 1.5 | 2 | | 4b | 8b | i-Pr ₂ N | Н | 1.5 | 1.5 | 2 | | 4c | 8c | | H | 1.5 | 1.5 | 2 | the reaction. In contrast, the acylation of N,N-dial-kyl-2-(trifluoroacetyl)vinylamines $\mathbf{4a-c^7}$ proceeded very easily to give the corresponding 2,2-bistrifluoroacetylated compounds $\mathbf{8a-c}$ in excellent yields. Alternatively, $\mathbf{8a-c}$ could be obtained by the O-N exchange reaction of 2,2-bis(trifluoroacetyl)vinyl isobutyl ether $\mathbf{9^5}$ with appropriate secondary amines. It is worth noting that this O-N exchange method of $\mathbf{9}$ with primary amines and aqueous ammonia became the sole route to N-alkyl (or aryl)-substituted and N-unsubstituted 2,2-bis(trifluo- Table 2. Compounds 5-8 and 10-12 Prepared | Sub-
strate | Prod-
uct | Yield ^a (%) | mp (°C) (solvent)
or bp (°C)/mbar ^b | Molecular
Formula ^c | $IR (KBr)^d$ $v (cm^{-1})$ | 1 H NMR (CDCl ₃ /TMS) e δ , J (Hz) | |----------------|-----------------------|------------------------|---|---|--|---| | 1 | 5 | 83 | 115-116 (hexane/
benzene) | $C_{10}H_{11}F_6NO_3$ (307.2) | 1668, 1640,
1594 | 1.44 (t, 3 H, $J = 7$, CH_2CH_3), 3.36 (s 6 H, NCH_3), 4.45 (q, 2 H, CH_2CH_3) | | 2 | 6 | 90 | 7475 (benzene) | $C_{11}H_{13}F_6NO_2S$ (337.3) | 1640, 1590 | 1.00-1.70 (m, 6H, CH ₂ CH ₃), 2.55 (s, 3H, SCH ₃), 3.60-4.10 (m, 4H, CH ₂ CH ₃) | | 3 | 7 ^f | 99 | 27-30 (hexane) | $C_8H_6F_6O_2S_2$ (312.3) | 1733, 1705,
1680 | 2.62 (s, $6H$, CH_3) | | 4a
9 | 8a | 87
90 | 53-54 (benzene) | $C_8H_7F_6NO_2$ (263.1) | 1686, 1647,
1600 | 2.79 (s, 3 H, CH ₃), 3.47 (s, 3 H, CH ₃), 7.78 (s, 1 H, NCH=) | | 4b | 8b | 85 | 108-109 | $C_{12}H_{15}F_6NO_2$ | 1710, 1640, | 1.28 (d, 6 H, $J = 6$, CH ₃), 1.37 (d, 6 H, | | 9 | | 96 | (benzene) | (319.2) | 1585 | J = 6, CH ₃), 3.20–4.09 (m, 2 H, CH), 7.66 (s, 1 H, NCH=) | | 4c
9 | 8c | 98
91 | 89-90 (benzene) | $C_{10}H_9F_6NO_2$ (289.2) | 1690, 1645,
1590 | 1.93–2.50 [br, 4H, NCH ₂ (CH ₂) ₂],
2.67–3.17 (br, 2H, NCH ₂), 3.67–4.00
(br, 2H, NCH ₂), 7.73 (s, 1H, NCH=) | | 9 | 8d | 77 | 68–69 (CHCl ₃) | $C_7H_5F_6NO_2$ (249.1) | 3350, 1705,
1640, 1605 | $3.30 (d, 3 H, J = 5, NCH_3), 7.83 (s, 1 H, NCH =), 10.09 - 11.09 (br, 1 H, NH)$ | | 9 | 8e | 63 | 93-94 (EtOAc) | $C_{12}H_7F_6NO_2$ (311.2) | 3400, 1702,
1655, 1621,
1616, 1586 | 7.33 (br, s, 5 H _{arom}), 8.33 (d, 1 H, <i>J</i> = 14, NCH=), 11.66-12.66 (br, 1 H, NH) ⁸ | | 9 | 8f | 77 | 105–106 (CHCl ₃) | C ₁₃ H ₉ F ₆ NO ₃ (341.2) | 3300-2740,
1693, 1640,
1617, 1605,
1583 | 3.77 (s, 3 H, OCH ₃), 6.77-7.30 (m, 4 H _{arom}), 8.22 (d, 1 H, <i>J</i> = 14, NCH=), 12.00-12.83 (br, 1 H, NH) | | 9 | 8g | 96 | 123-124 (EtOAc) | $C_{12}H_6F_6N_2O_4$ (356.2) | 3375, 1707,
1655, 1625,
1587 | 7.37 (d, $J = 9$, 2 H _{arom}), 8.17 (d, $J = 9$, 2 H _{arom}), 8.30 (d, 1 H, $J = 12$, NCH=), 12.23 (br d, 1 H, $J = 12$, NH) ^h | | 9 | 8h | 82 | 143-144 (EtOAc) | $C_6H_3F_6NO_2$ (235.1) | 3356, 3240,
1650, 1550 | 7.97 (d, 1 H, $J = 14$, NCH=),
9.00-11.70 (br, 2 H, NH ₂) ^h | | 9 | 10a | 82 | 70/1.3 | $C_8H_6F_6O_2S$ (280.2) | 1705, 1685,
1474 ⁱ | 1.45 (t, 3 H, $J = 7$, CH ₂ CH ₃), 3.00 (q, 2H, $J = 7$, CH ₂ CH ₃), 8.65 (s, 1 H, SCH=) | | 9 | 10b | 78 | 120/1.3 | $C_{13}H_8F_6O_2S$ (342.3) | 1702, 1680,
1474 ⁱ | 4.10 (s, 2 H, CH ₂), 7.20 (s, 5 H _{arom}), 8.63 (s, 1 H, SCH=) | | 9 | 10c | 69 | 59-60 (hexane) | $C_{13}H_8F_6O_2S$ (342.3) | 1712, 1676,
1473 | 2.40 (s, 3 H, CH ₃), 7.27 (s, 4 H _{arom}), 8.80 (s, 1 H, SCH=) | | 7 | 118 | 42 | 97-98 (hexane) | C ₆ H ₈ F ₃ NOS
(199.2) | 3410, 1600,
1575, 1515,
1502 | 2.45 (s, 3 H, SCH ₃), 3.08 (d, 3 H, <i>J</i> = 6, NCH ₃), 5.30 (s, 1 H, =CHCO), 10.80-11.80 (br, 1 H, NH) | | 7 | 12 | 44 | 69-70 (hexane) | $C_9H_{10}F_6N_2OS$ (308.2) | 3425, 1588 | 2.40 (s, 3 H, SCH ₃), 3.30–3.40 (m, 6 H, NCH ₃ and =NCH ₃), 11.80–12.70 (br, 1 H, NH) | ^a Yield of isolated products. ^b Oven temperature of Kugelrohr distillation. ^c Satisfactory microanalyses obtained (except for 7): $C \pm 0.45$, $H \pm 0.14$, $N \pm 0.31$, $F \pm 0.14$; exception: 8a, F - 0.45: 12, F + 0.63; 8b, e, g, F not analyzed. d Recorded on a Hitachi Model EPI-G3 grating spectrophotometer. ^{*} Measured using a JEOL PMX-60SI spectrometer. The structure of 7 was confirmed by its conversion to 11 and 12 by reaction with MeNH₂. In CD₃CN In CD₃CN/CDCl₃. i Measured as film. May 1992 SYNTHESIS 457 roacetyl)vinylamines **8d-h**, because the acylation of N-alkyl (or aryl)-substituted and N-unsubstituted 2-(tri-fluoroacetyl)vinylamines occurred not at the olefinic C-atom but at the nitrogen. Likewise, 2,2-bis(trifluoroacetyl)vinyl sulfides **10a-c** were prepared in fair yields by O-S exchange reaction of **9** with appropriate thiols under mild conditions. In this case, for example, attempted trifluoroacetylation of ethyl 2-(trifluoroacetyl)vinyl sulfide failed even under forced conditions. The diacylation reaction will probably be inhibited by the presence of 2-substituent, the trifluoroacetyl group. The structure of the new compounds **5 6 8 10** were The structure of the new compounds 5, 6, 8, 10 were supported by ¹H NMR, IR and microanalyses. However, purification for microanalysis of 7 was difficult. Therefore, the structural assignment was confirmed by its ¹H NMR and IR spectra, and further conversion of 7 into 11⁸ and 12 by reaction with methylamine in ethanol at room temperature for 4 hours. In conclusion, facile and convenient synthetic methods for various bis(trifluoroacetyl)ketene N,O-, N,S-, S,S-acetals, 2,2-bis(trifluoroacetyl)vinylamines and sulfides were established. Further investigations for the synthetic utilization of these new CF_3 -containing compounds are currently under way in our laboratory. ### 4-Dimethylamino-4-ethoxy-1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-one (5); Typical Procedure: Trifluoroacetic anhydride (16.6 g, 79 mmol) was added dropwise to a stirred solution of 1 (2.39 mg, 11.3 mmol) and pyridine (1.82 g, 23 mmol) in CHCl₃ (40 mL) and stirring was continued at r.t. for 2 h. The mixture was washed with aq 10 % $\rm Na_2CO_3$ (300 mL), 2 N HCl (300 mL) and finally $\rm H_2O$ (300 mL), extracted with $\rm CH_2Cl_2$ (300 mL), and dried ($\rm Na_2SO_4$). The solvent was evaporated to give diacylketene N,O-acetal 5; yield: 2.88 g (83 %). C₁₀H₁₁F₆NO₃ calc. C 39.10 H 3.61 F 37.11 N 4.56 (307.2) found 38.82 3.50 37.15 4.79 #### 4-Dimethylamino-1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-one (8a) by O-N Exchange Reaction; Typical Procedure: To a solution of 9 (2.00 g, 6.85 mmol) in CH_2Cl_2 (15 mL) was added 50% aq Me₂NH (680 mg, 7.54 mmol). The mixture was stirred at r.t. for 4 h. Removal of the solvent under reduced pressure afforded 2,2-diacylvinylamine 8a; yield: 1.44 g (80%). C₈H₇F₆NO₂ calc. C 36.52 H 2.68 F 43.33 N 5.32 (263.1) found 36.14 2.58 42.88 5.01 In the reactions of **9** with aq Me₂NH (50%), MeNH₂ (40%) and NH₃ (28%), CH₂Cl₂ was used as a solvent. ## 4-Ethylthio-1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-one (10a) by O-S Exchange Reaction; Typical Procedure: To a stirred solution of 9 (2.00 g, 6.85 mmol) in CHCl₃ (3 mL) was added EtSH (0.51 mL, 6.83 mmol) and allowed to stand at r.t. for 2 h. The mixture was concentrated and the residue was distilled under reduced pressure to give pure 2,2-diacylvinyl sulfide 10 a; yield: 1.57 g (82%). C₈H₆F₆O₂S calc. C 34.29 H 2.16 F 40.68 (280.2) found 34.74 2.12 40.71 ## Reaction of 4,4-Bis(methylthio)-1,1,1-trifluoro-3-(trifluoroacetyl)-3-buten-2-one (7) with Methylamine: To a stirred solution of 7 (2.00 g, 6.40 mmol) in EtOH (15 mL) was added dropwise 40 % aq MeNH₂ (3.98 g, 51.21 mmol) and stirring was continued at r.t. for 4 h. The solvent was removed in vacuo and CH₂Cl₂ (100 mL) was added to the residue. The solution was dried (Na₂SO₄) and concentrated to afford a crude mixture of 11 and 12, which was chromatographed on a silica gel column (5 × 15 cm; 200 mesh) using EtOAc/MeOH as eluent to give 11 [yield: 535 mg (42%); mp 97–98°C (Lit.⁸ mp 97–98°C)] and 12 [yield: 868 mg (44%)]. C₉H₁₀F₆N₂OS (12) calc. C 35.07 H 3.27 F 36.98 N 9.09 (308.2) found 35.24 3.38 37.61 9.16 - (1) Hojo, M.; Masuda, R.; Kamitori, Y. Tetrahedron Lett. 1976, 1009. - (2) Hojo, M.; Masuda, R.; Kokuryo, Y.; Shioda, H.; Matsuo, S. Chem. Lett. 1976, 499. - (3) Hojo, M.; Masuda, R.; Okada, E. Synthesis 1986, 1013. - (4) Hojo, M.; Masuda, R.; Okada, E. Tetrahedron Lett. 1986, 27, 353. - (5) Hojo, M.; Masuda, R.; Okada, E. Synthesis 1990, 347. - (6) Kamitori, Y.; Hojo, M.; Masuda, R.; Fujitani, T.; Kobuchi, T.; Nishigaki, T. Synthesis 1986, 340. - (7) Hojo, M.; Masuda, R.; Okada, E.; Sakaguchi, S.; Narumiya, H.; Morimoto, K. Tetrahedron Lett. 1989, 30, 6173. - (8) Hojo, M.; Masuda, R.; Okada, E.; Yamamoto, H.; Morimoto, K.; Okada, K. Synthesis 1990, 195. - (9) Hojo, M.; Masuda, R.; Okada, E. Chem. Lett. 1990, 2095. - (10) Filler, R. In Organofluorine Chemicals and Their Industrial Applications; Banks, R. E. Ed; Ellis Horwood: London, 1979; p 123. - (11) Biomedicinal Aspects of Fluorine Chemistry; Filler, R., Ko-bayashi, Y. Eds.; Kodansha & Elsevier Biomedical: Tokyo, 1982; p 1. - (12) Welch, J. T. Tetrahedron, 1987, 43, 3123.