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Abstract: The first asymmetric total synthesis of the title 

compounds, unnatural enantiomers, has been achieved. 

Axanes such as (+)-axamide-4 and (+)-axisonitrile-4 were isolated from the marine sponge AxineUa 

cannabia, and possess a series of nitrogen-containing functional groups rarely found in natural products. 1) 

The structure assignments were based on the crystal structure analysis of a derivative of axisothioeyanate- 

1.2) We were interested in (ent)-axane-4 group and envisioned the synthesis of the unnatural enantiomers, 

(-)-axamide-4 and (-)-axisonitrile-4, since natural products with an isonitrile group show various biological 

activities and the antipodes often show different activities. There is only one raeemic synthesis of the 

axane-4 group. 3) We report herein the first enantioselective synthesis of axamide-4 [(-)-1] and 

axisonitrile-4 [(-)-2]. 

~ NHCHO 

(+)-axamide-4 [(+)-1] 

~ NC: 

(+)-axisonitdle-4 [(+)-2] 

Enone (-)-4 was prepared from (+)-3 according to our reported method 4) in 90% yield (Scheme 1). 

1,4-Addition of the C-rignard reagent prepared from 2-(2-bromoethyl)-l,3-dioxane gave quantitatively the 

trans adduct (+)-5 as an exclusive diastereomer. Treatment of (+)-5 with excess CuCI2 in DMF at 60 *C 

and then with TBAF in THF gave the corresponding desilylated enone whose hydrogenation in the 

presence of 10% Pd-C in ethanol gave (-)-6. Treatment of (-)-6 with 6M HCI in THF gave the bicyclic 
enone (+)-7 in 72% yield. SnCI4 catalyzed 1,4-addition of a ketene silyl acetal to the enone (+)-7 afforded 

a 1.5:1 mixture of (-)-8 and a chromatographically inseparable diastereomer in high yield. Isomerization 

of (-)-9 to (-)-8 under thermodynamically controlled conditions was examined, i.e., the mixture was treated 
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Scheme 1 
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a) MeLi, THF; b) PCC, CH2CI2; c) BrMg--,,.. )" , CuBr/Me2S, HMPA, TMSCI, THF; 

d) KF, MeOH; e) CuCI2, DMF; f) TBAF, THF; g) Pd-C, I-I 2, EtOH; h) 6 M HCI, THF; 

,..O'rBDMS, SnCI4, CHiCI2;j ) t-BuOK, t-BuOH; k) Ph3P=CH 2, t-BuOH; I) NaOH, MeOH; 
" OEt 

m) IDA, THF, 50 "C, then acetone; n) allyl bromide, NaHCO3, DMF. 

with t-BuOK in t-BuOH to give (-)-8 as a sole product in 56% yield. 5) The structure of the keto ester (-)-8 

was confirmed by the spectral data reported by Hart. 3a) The Wittig olefination of (-)-8 followed by 

hydrolysis of the ester moiety afforded acid (-)-11. Reaction of (-)-11 via the dianion with acetone 

proceeded in good yield and the produced hydroxy acid was treated with allyl bromide in the presence of 
NaHCO3 in DMF to afford (+)-12 (52%) and (-)-13 (32%), whose structures were tentatively assigned 

with analogy of the corresponding methyl ester. 3a) Dehydration of (+)-12 and (-)-13 was achieved with 

POCI3 in pyridine to afford esters, (-)-14 and (-)-15, in high yields (Scheme 2). Treatment of (-)-14 and 

(-)-15 with t-BuOK in t-BuOH gave a mixture of (-)-16, (-)-14, and (-)-15 with the same ratio (20:2:3), 

respectively. 6) The mixture could not be separated by column chromatography. Dcprotcction of the allyl 
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ester (-)-167) was accomplished in the presence of 15 mol% tetrakis(triphenylphosphine) palladium(0) and 

an excess amount of BuNH2 to provide acid (-)-17 which still contained a small amount of isomers. The 

synthesis of (-)-axamide-4 (1) and (-)-axisonitrile-4 (2) from the acid (-)-17 was carried out according to 

Hart's method. 3a) The Curtius rearrangement with diphenyl phosphorazidate (DPPA) provided isocyanate 

(-)-18 which was separable from the minor isomers. Reduction of the isocyanate (-)-18 with Super 
Hydride (LiEt3BI-I) gave (-)-axamide-4 [(-)-1] 8) in 89% yield. Treatment of (-)-axamide [(-)-1] with p- 

TsCI in pyridine afforded (-)-axisonitrile-4 [(-)-2] 8) in 94% yield. The spectral data of synthesized (-)-1 

and (-)-2 were identical with Hart's data 3a) and those of the natural products.le) In summary, the first 

asymmetric synthesis of two members of axane-4 group was accomplished starting with (+)-3, Since (-)-3 

is also readily available, 9) this procedure promises the synthesis of (+)-axamide-4 and (+)-axisonitrile-4. 

Scheme 2 
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a) POCI 3, pyridine; b) t-BuOK, t-BuOH; c) 15 tool% Pd°(PPh3)4, BuNH2, THF; 
d) Nail, THF then DPPA, THF; e) LiEt3BH, THF; 0 p-TsCI, pyridine. 
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The starting mixture of (-)-8 and (-)-9 already contained about 60% of (-)-8, therefore, this result may 
be attributed to selective decomposition of (-)-9. Many attempts to improve the yield were 
unsucx~ssful. 

(-)-16: oil; [aid 23 -60.1" (c 1.2, CHCI3); IR (neat) 1710 (C--O), 1640, 990, 890 (C=C); 1HNMR 

(CDCI3) 6 0.96 (s, 3H), 1.18-1.86 (m, 7H), 1.68 (s, 3H), 1.79 (s, 31- 0, 1.95-2.20 (m, 3H), 2.29 (d, 

J=10.9 l-lz, 1H), 3.28 (ddd, J=10.9, 10.9, 6.9 I-Iz, 1H), 4.53-4.74 (m, 4H), 5.26 (dd, J=10.6, 1.5 Hz, 
1H), 5.37 (dd, J=17.2, 1.5 Hz, 1H), 5.99 (ddt, J=17.2, 10.6, 5.9 Hz, 1I-1); 13C NMR ¢5 20.6, 23.1, 23.8, 

25.0, 27.8, 30.7, 33.2, 40.5, 42,2, 43.4, 58.9, 64.8, 110.9, 118.8, 131.4, 132.3, 136.4, 147.1, 170.2; 
Found: m/z 288.2099. Calcd for C19H2802: M, 288.2090. 

Hydrolysis of the corresponding methyl ester was unsuccessful. 
(-)-Axamide-4 [(-)-1]: mp 99-100.5 *C; [crib 21 -66.4* (c 0.3, CHCI3); [(+)-1]: lit. le) mp 81-84"C; 
[Ct]D +63* (CHCI3); (-)-axisonitrile-4 [(-)-20]: nap 65.5-66.5 *C; [¢t~18 -57.6* (c 0.5, CHCI3); 
[(+)-2]: lit. le) mp 56-58 *C; [Ct]D +51.4" (c 1.0, CHCI3). 
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