

0040-4039(95)00542-0

Total Synthesis of (-)-Axamide-4 and (-)-Axisonitrile-4

Taketoshi Ohkubo, Hiroyuki Akino, Morio Asaoka,* and Hisashi Takei

Department of Life Chemistry, Tokyo Institute of Technology, Nagatsuta Midoriku, Yokohama 226, Japan

Abstract: The first asymmetric total synthesis of the title compounds, unnatural enantiomers, has been achieved.

Axanes such as (+)-axamide-4 and (+)-axisonitrile-4 were isolated from the marine sponge Axinella cannabia, and possess a series of nitrogen-containing functional groups rarely found in natural products.¹) The structure assignments were based on the crystal structure analysis of a derivative of axisothiocyanate- 1.2^{2} We were interested in (ent)-axane-4 group and envisioned the synthesis of the unnatural enantiomers, (-)-axamide-4 and (-)-axisonitrile-4, since natural products with an isonitrile group show various biological activities and the antipodes often show different activities. There is only one racemic synthesis of the axane-4 group.³) We report herein the first enantioselective synthesis of axamide-4 [(-)-1] and axisonitrile-4 [(-)-2].

Enone (-)-4 was prepared from (+)-3 according to our reported method⁴) in 90% yield (Scheme 1). 1,4-Addition of the Grignard reagent prepared from 2-(2-bromoethyl)-1,3-dioxane gave quantitatively the trans adduct (+)-5 as an exclusive diastereomer. Treatment of (+)-5 with excess CuCl₂ in DMF at 60 °C and then with TBAF in THF gave the corresponding desilylated enone whose hydrogenation in the presence of 10% Pd-C in ethanol gave (-)-6. Treatment of (-)-6 with 6M HCl in THF gave the bicyclic enone (+)-7 in 72% yield. SnCl4 catalyzed 1,4-addition of a ketene silyl acetal to the enone (+)-7 afforded a 1.5:1 mixture of (-)-8 and a chromatographically inseparable diastereomer in high yield. Isomerization of (-)-9 to (-)-8 under thermodynamically controlled conditions was examined, i.e., the mixture was treated

a) MeLi, THF; b) PCC, CH_2Cl_2 ; c) $BrMg \sim 0$, $CuBr/Me_2S$, HMPA, TMSCI, THF; d) KF, MeOH; e) $CuCl_2$, DMF; f) TBAF, THF; g) Pd-C, H_2 , EtOH; h) 6 M HCI, THF; i) ~ 0 TBDMS, $SnCl_4$, CH_2Cl_2 ; j) *t*BuOK, *t*-BuOH; k) Ph_3P=CH_2, *t*-BuOH; l) NaOH, MeOH; m) LDA, THF, 50 °C, then acetone; n) allyl bromide, NaHCO₃, DMF.

with t-BuOK in t-BuOH to give (-)-8 as a sole product in 56% yield.⁵) The structure of the keto ester (-)-8 was confirmed by the spectral data reported by Hart.^{3a}) The Wittig olefination of (-)-8 followed by hydrolysis of the ester moiety afforded acid (-)-11. Reaction of (-)-11 via the dianion with acetone proceeded in good yield and the produced hydroxy acid was treated with allyl bromide in the presence of NaHCO3 in DMF to afford (+)-12 (52%) and (-)-13 (32%), whose structures were tentatively assigned with analogy of the corresponding methyl ester.^{3a}) Dehydration of (+)-12 and (-)-13 was achieved with POCl3 in pyridine to afford esters, (-)-14 and (-)-15, in high yields (Scheme 2). Treatment of (-)-14 and (-)-15 with t-BuOK in t-BuOH gave a mixture of (-)-16, (-)-14, and (-)-15 with the same ratio (20:2:3), respectively.⁶) The mixture could not be separated by column chromatography. Deprotection of the allyl

3366

ester (-)-16⁷) was accomplished in the presence of 15 mol% tetrakis(triphenylphosphine) palladium(0) and an excess amount of BuNH₂ to provide acid (-)-17 which still contained a small amount of isomers. The synthesis of (-)-axamide-4 (1) and (-)-axisonitrile-4 (2) from the acid (-)-17 was carried out according to Hart's method.^{3a}) The Curtius rearrangement with diphenyl phosphorazidate (DPPA) provided isocyanate (-)-18 which was separable from the minor isomers. Reduction of the isocyanate (-)-18 with Super Hydride (LiEt₃BH) gave (-)-axamide-4 [(-)-1]⁸) in 89% yield. Treatment of (-)-axamide [(-)-1] with *p*-TsCl in pyridine afforded (-)-axisonitrile-4 [(-)-2]⁸) in 94% yield. The spectral data of synthesized (-)-1 and (-)-2 were identical with Hart's data^{3a}) and those of the natural products.^{1c}) In summary, the first asymmetric synthesis of two members of axane-4 group was accomplished starting with (+)-3. Since (-)-3 is also readily available,⁹) this procedure promises the synthesis of (+)-axamide-4 and (+)-axisonitrile-4.

a) POCl₃, pyridine; b) *t*-BuOK, *t*-BuOH; c) 15 mol% Pd⁰(PPh₃)₄, BuNH₂, THF;
d) NaH, THF then DPPA, THF; e) LiEt₃BH, THF; f) *p*-TsCl, pyridine.

Acknowledgement

We thank Prof. Katsumi Kakinuma in this Institute for mass spectral determinations.

References and Notes

1) a) F. Cafieri, E. Fattorusso, S. Magno, C. Santacroce, and D. Sica, Tetrahedron, 1973, 29, 4259.

- b) E. Fattorusso, S. Magno, L. Mayol, C. Santacroce, and D. Sica, Tetrahedron, 1974, 30, 3911.
- c) E. Fattorusso, S. Magno, L. Mayol, C. Santacroce, and D. Sica, Tetrahedron, 1975, 31, 269.
- d) B. D. Blasio, E. Fattorusso, S. Magno, L. Mayol, C. Pedone, C. Santacroce, and D. Sica, *Tetrahedron*, 1976, 32, 473.
- e) A. Iengo, L. Mayol, and C. Santacroce, Experientia, 1977, 11.
- M. Adinolfi, L. D. Napoli, B. D. Blasio, A. Iengo, C. Pedone, and C. Santacroce, *Tetrahedron Lett.*, 1977, 2815.
- 3) a) B. Chenera, C.-P. Chuang, D. J. Hart, and C.-S. Lai, J. Org. Chem., 1992, 57, 2018.
 b) D. J. Hart, C.-S. Lai, Synlett, 1989, 49.
- 4) M. Asaoka, M. Sakurai, and H. Takei, Tetrahedron Lett., 1990, 31, 4759.
- 5) The starting mixture of (-)-8 and (-)-9 already contained about 60% of (-)-8, therefore, this result may be attributed to selective decomposition of (-)-9. Many attempts to improve the yield were unsuccessful.
- 6) (-)-16: oil; [α]p²³-60.1° (*c* 1.2, CHCl3); IR (neat) 1710 (C=O), 1640, 990, 890 (C=C); ¹H NMR (CDCl3) δ 0.96 (s, 3H), 1.18-1.86 (m, 7H), 1.68 (s, 3H), 1.79 (s, 3H), 1.95-2.20 (m, 3H), 2.29 (d, J=10.9 Hz, 1H), 3.28 (ddd, J=10.9, 10.9, 6.9 Hz, 1H), 4.53-4.74 (m, 4H), 5.26 (dd, J=10.6, 1.5 Hz, 1H), 5.37 (dd, J=17.2, 1.5 Hz, 1H), 5.99 (ddt, J=17.2, 10.6, 5.9 Hz, 1H); ¹³C NMR δ 20.6, 23.1, 23.8, 25.0, 27.8, 30.7, 33.2, 40.5, 42.2, 43.4, 58.9, 64.8, 110.9, 118.8, 131.4, 132.3, 136.4, 147.1, 170.2; Found: m/z 288.2099. Calcd for C19H28O2: M, 288.2090.
- 7) Hydrolysis of the corresponding methyl ester was unsuccessful.
- 8) (-)-Axamide-4 [(-)-1]: mp 99-100.5 °C; [α]p²¹ -66.4° (c 0.3, CHCl₃); [(+)-1]: lit.^{1e}) mp 81-84°C; [α]p +63° (CHCl₃); (-)-axisonitrile-4 [(-)-20]: mp 65.5-66.5 °C; [α]p¹⁸ -57.6° (c 0.5, CHCl₃); [(+)-2]: lit.^{1e}) mp 56-58 °C; [α]p +51.4° (c 1.0, CHCl₃).
- 9) M. Asaoka, K. Shima, and H. Takei, Tetrahedron Lett., 1987, 28, 5669.

(Received in Japan 10 February 1995; revised 9 March 1995; accepted 20 March 1995)