Double-Sided Porphyrinatoiron(II) Bearing Covalently Bound Imidazole.

An Efficient Oxygen-Carrier Molecule Composed by 8 Ester Bonds

Teruyuki KOMATSU, Kenji ARAI, Hiroyuki NISHIDE, and Eishun TSUCHIDA*

Department of Polymer Chemistry, Waseda University, Shinjuku-ku, Tokyo 169

Double-sided porphyrinatoiron(II) bearing covalently bound axial imidazole, 5,10,15-tris(2,6-bis(3,3-dimethylbutyryloxy)phenyl)-20-(2-(3,3-dimethylbutyryloxy)-6-(5-imidazolylvaleroyloxy)phenyl)porphyrinatoiron (1b), was synthesized: The substituents of 1b are bound with the porphyrin only through ester bonds. 1b formed a stable 02 adduct reversibly in toluene at 25 °C or with a lipid surfactant under physiological conditions.

As a model compound of hemoglobin (Hb) and myoglobin (Mb), both-faces hindered porphyrinatoiron complexes have been prepared and their O_2 and CO binding behavior was discussed extensively. 1-4) The most unique feature of them is prevention against the irreversible oxidation of the porphyrinatoirons via μ -dioxo dimer formation.

Recently we have reported synthesis of highly symmetric tetraphenylporphyrins, "double-sided porphyrins", bearing 8 ester groups on the both sides of the porphyrin plane and O_2 and CO binding property of their iron complexes.⁵⁾ Advantages of the double-sided porphyrinatoirons are (1) removal of complexity of diastereoisomeric properties in the preparation and (2) variation in the O_2 binding affinity and/or kinetics by the pocket-size of porphyrin.^{5b,c)} However there remains a couple of unsolvable problems that an axial base is to be externally added and that the O_2

Fig. 1. Double-sided porphyrin bearing covalently bound imidazole.

1b'

1b

binding affinity is much lower than that of Hb and Mb. Porphyrin derivatives covalently combined with axial base have been synthesized: chelated, $^{6)}$ tailed picket-fence, $^{7)}$ ligand-appended, $^{8)}$ hanging-base, $^{1)}$ capped-strapped, $^{3)}$ and doubly-bridged, $^{4)}$ porphyrinatoiron. Behaviors of their O_2 binding have been discussed.

This paper reports the synthesis of new double-sided porphyrinatoiron(II) bearing both ester-cavities and covalently bound axial imidazole (Fig. 1) through a convenient route. The high O_2 binding affinity at room temperature and ligand binding property are described.

5,10,15-Tris(2,6-bis(3,3-dimethylbutyryloxy)phenyl)-20-(2-(3,3-dimethylbutyryloxy)-6-hydroxyphenyl) porphyrin was synthesized by condensation of 5,10,15,20-tetrakis(2,6-bis(hydroxy)phenyl) porphyrin with 7.2 times mole of 3,3-dimethylbutyrylchloride in dry terahydrofuran (THF) (10%). This compound was allowed to react with 5-(imidazolyl)valeroyl chloride in the presence of 4-(dimethylamino)pyridine in dry acetonitrile to give 1a (54%). From was inserted by refluxing with $FeBr_2/THF$ in the presence of 2,6-lutidine to give 1b'. All preparative steps including purification were carried out in a dark room. 1b' was converted to the Fe(II) derivative 1b by reduction using aqueous $Na_2S_2O_4$ in a heterogeneous two-phase system under N_2 atmosphere. The visible absorption spectrum of 1b in toluene solution showed deoxy state (λ_{max} ; 555, 535, and 432 nm) assigned to five N-coordinated porphyrinatoiron(II).

The visible absorption spectrum of the deoxy ${\bf 1b}$ changed to that of ${\bf O}_2$ adduct on exposure to ${\bf O}_2$ ($\lambda_{\rm max}$ (toluene); 544 and 420 nm). The ${\bf O}_2$ adduct changed to the corresponding CO adduct on bubbling CO gas through the solution ($\lambda_{\rm max}$ (toluene); 540 and 421 nm). The half-life of the ${\bf O}_2$ adduct with respect to the irreversible oxidation of Fe(II) to Fe(III) in toluene at 25 °C was >2 days. Reversible ${\bf O}_2$ binding at room temperature was also successfully observed for ${\bf 1b}$ solubilized with a phospholipid ,*e.g.*, dipalmitoylphosphocholine (DPPC) in an aqueous medium. ${\bf 10}$ The phospholipid vesicle embedded with ${\bf 1b}$ is an efficient dioxygen carrier under physiological condition.

The CO bonding property of **1b** was studied by infrared spectroscopy. Difference spectrum of the deoxy **1b** vs. the CO-**1b** adduct gave v(CO) at 1962 cm⁻¹ ([Fe]=10 mmol dm⁻³ in benzene), which is much lower than that of the 5,10,15,20-tetrakis (2,6-bis(pivaloyloxy)phenyl)porphyrinatoiron(II) [T(piv)₈PP](1-hexylimidazole) (1979 cm⁻¹).^{5a,d)} This difference in v(CO) for double-sided porphyrins is due to the electron-donating ability of the imidazole ligand. Since the imidazole coordination to the central iron of $T(piv)_8PP$ was sterically restrained by the bulky pivaloyloxy groups, the electron donation from the axial base to the iron might be decreased compared to that in the single-face hindered series such as picket-fence porphyrinatoiron (TpivPP).^{5d)} On the other hand, the value of v(CO) of **1b** was nearly the same to that of TpivPP, indicating that covalently attached imidazole of **1b** bound to the central iron(II) without the unfavorable steric repulsion on the rear side.

Kinetics of the O_2 binding were analyzed with laser flash photolysis of the O_2 adduct under CO binding competition by using Gibson's equation. 7,11 O_2 and CO binding affinity $(P_{1/2}(O_2), P_{1/2}(CO))$: the pressure of O_2 or CO at half saturation; the reciprocal of the equilibrium constants) 12 of 1b were 90 and 240 times higher than those of our previously reported 5,10,15,20-tetrakis(2,6-bis(3,3-dimethylbutyryloxy)phenyl)porphyrinatoiron $(T(db)_8PP)/1,2$ -Me₂Im, respectively $(Table\ 1).5c,12)$ These porphyrinatoirons revealed gaseous ligand

Table 1. O_2 and CO binding parameters of porphyrinatoiron(II)s in toluene at 25 ${}^{\circ}C^{a)}$

Comlex	$\frac{k_{on}(O_2)}{dm^3mol^{-1}s^{-1}}$	$\frac{k_{off}(O_2)}{s^{-1}}$	$\frac{P_{1/2}(O_2)}{Torr}$	$\frac{k_{on}(CO)}{dm^3mol^{-1}s^{-1}}$	$\frac{k_{off}(CO)}{s^{-1}}$	P _{1/2} (CO) Torr
$T(piv)_35CImPP^{b)}$ $T(db)_8PP/1,2-Me_2Im^{c)}$	6.3×10^7 4.3×10^8 4.5×10^7	1.2×10^{3} 2.9×10^{3} 7.9×10^{4}	2.5 0.58 230	1.3×10 ⁷ 3.6×10 ⁷ 9.0×10 ⁵	9.3x10 ⁻³ 7.8x10 ⁻³ 1.5x10 ⁻¹	

a) Estimated errors < 10%.

binding affinities of Relaxed(R) and Tense(T) state Hb. 6,7) The kinetic behaviors of O_2 and CO binding of **1b** corresponded to the R state.

In TpivPP, the pivalamide groups are believed to provide a distal moiety with a favorable electrostatic interaction with a coordinated dioxygen and contribute to an increasing of O_2 binding affinity. $^{1,7,8,11)}$ In fact, the modified porphyrinatoirons with reversible O_2 -coordinating capability often bear amide residues in their substituent groups on the porphyrin plane. The O_2 binding affinity of **1b** were slightly lower than that of tailed picket-fence heme $(T(piv)_3 5CImPP)$, which had a similar structure to **1b** except for containing an amide groups.

Our results show that the so-called amide effect^{1,7,8,11)} is not crucial for a reversible and stable dioxygen adduct if the porphyrin molecules is modified ingeniously.

References

- 1) M. Momenteau, *Pure Appl. Chem.*, **58**, 1493 (1986).
- 2) K. S. Suslick and M. M. Fox, J. Am. Chem. Soc., 105, 3507 (1983).
- 3) J. E. Baldwin, J. H. Cameron, M. J. Crossley, I. J. Dagley, S. R. Hall, and T.Klose, J. Chem. Soc., Dalton

b) T(piv)₃5CIm; Tailed picket-fence porphyrinatoiron(II). From Ref. 7.

c) 1,2-Me₂Im; 1,2-Dimethylimidazole. From Ref. 5c.

- Trans., 1984, 1739.
- 4) A. R. Battersby, A. S. J. Batholomew, and T. Nitta, J. Chem. Soc., Chem. Commun., 1983, 1291.
- 5) a)E. Tsuchida, T. Komatsu, E. Hasegawa, and H. Nishide, J. Chem. Soc., Dalton Trans., 1990, 2713; b)E. Tsuchida, E. Hasegawa, T. Komatsu, and H. Nishide, Bull. Chem. Soc., Jpn., 64, 888 (1991); c)T. Komatsu, S. Kumamoto, E. Hasegawa, and H. Nishide, J. Chem. Soc., Dalton Trans., 1991, 3281; d)E. Tsuchida, T. Komatsu, T. Nakata, E. Hasegawa, H. Nishide, and H. Inoue, ibid., 1991, 3285.
- 6) D. K. White, J. B. Cannon, and T. G. Traylor, J. Am. Chem. Soc., **101**, 2443 (1979).
- J. P. Collman, J. I. Brauman, B. L. Iverson, J. L. Sessler, R. M. Morris, and G. H. Gibson, J. Am. Chem. Soc., 105, 3052 (1983); J. P. Collman, J. I. Brauman, K. M. Doxsee, T. R. Halbert, and K. S. Suslick, Proc. Natl. Acad. Sci., U.S.A., 75, 564 (1978).
- 8) C. K. Chang, B. Ward, R. Young, and M. P. Kondylis, J. Macromol. Sci.-Chem., A25, 1307 (1988).
- 9) Spectroscopic data for $\mathbf{1a}$: δ_{H} (400 MHz, CDCl₃, Me₄Si)-3.0(2H, s, inner H), -0.5-0.4(63H, m, t-butyl), 1.2(14H, m, -(CH₂)-), 2.8(2H, t, OC(=O)CH₂-)), 6.1,6.7,6.8(3H, s, imidazole), 7.3-7.8(12H, m, phenyl), and 8.8(8H, s, pyrrole); m/z 1578 (M⁺); λ_{max} (CHCl₃) 654, 583, 536, 507, and 415 nm. $\mathbf{1b'}$: m/z 1713 (M⁺); λ_{max} (CHCl₃) 680, 648, 582, 510, and 413 nm.
- 10) The phospholipid vesicle embedded with **1b** was prepared by sonication method as previously reported; E. Tsuchida, H. Nishide, M. Yuasa, E. Hasegawa, Y. Matsushita, and K. Eshima, *J. Chem. Soc.*, *Dalton Trans.*, **1985**, 275. **1b**/DPPC=1/100 (molar ratio) in 30 mmol dm⁻³ phosphate buffer, pH 7.4.
- 11) T. G. Traylor, S. Tsuchiya, D. Campbell, M. Mitchell, D. Stynes, and N. Koga, *J. Am. Chem. Soc.*, **107**, 604 (1985); T. G. Traylor, N. Koga, L. A. Deardurff, *ibid.*, **107**, 6504 (1985).
- 12) $P_{1/2}(CO)$ was estimated by M value (K(CO)/K(O₂)), which was determined spectrophotometrically with flow method. Refs. 7,11.

(Received February 14, 1992)