127

Rates of Base Cleavage of $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot MEt_3$ Compounds (n = 2 and 3, M = Si and Ge), and their Significance for Theories of Substituent Effects

By C. Eaborn,* R. Eastmond, and D. R. M. Walton, School of Molecular Sciences, University of Sussex, Brighton BN1 90J, Sussex

The rates of cleavage of X•C₆H₄•[C≡C]_n•MEt₃ compounds (n = 2 and 3, M = Si and Ge) by aqueous-methanolic alkali at 29.6 °C have been measured spectrophotometrically. The ease of cleavage increases as n is raised; *e.g.*, for the C₆H₅•[C≡C]_n•SiEt₃ compounds with n = 1, 2, and 3 the approximate relative rates are 1:240:4100. Germanium compounds are less reactive than the corresponding silicon compounds.

The rates of cleavage of X+C₆H₄+[C=C]₃+SiEt₃ compounds with X = p-OMe, H, p-F, m-Br, and p-NO₂ correlate well with the simple Hammett substituent constants, σ , which normally refer to reactions involving markedly smaller distances between the substituent X and the reaction site. This casts some doubt on the validity of treatments of substituent effects which involve separation into (a) field effects which depend only on the distance between the substituent site and the reaction site, and (b) resonance effects which depend on the effectiveness of conjugation between the sites. Substituent constants calculated according to one such treatment (that by Dewar and Grisdale) are less satisfactory than σ -constants for the cleavages studied.

RECENT advances in preparative methods¹ have made available to us compounds of the types $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot MR_3$ in which n = 2 and 3, and M = Si and Ge. These compounds have the following features which make them especially useful for a study of the nature of the effects of the substituents X in the aromatic ring: (a) the rates of alkali and acid cleavage of the alkynyl-M bond (the former reaction generating negative and the latter positive charge in the side-chain) can be easily measured spectrophotometrically, as has been demonstrated for the $X \cdot C_6 H_4 \cdot C \equiv C \cdot MR_3$ compounds; ^{2,3} (b) for n = 3, the reaction centre is much further removed from the substituent X than in most reactions used in substituent effect studies; and (c) the molecular backbone is rigid and linear, so that not only is the distance between the substituent and the reaction centre precisely known but also electrostatic effects can operate largely through the substrate cavity. This paper deals with the alkali cleavages.

Details of the rates of cleavage in aqueous methanolic alkali of several groups of $X \cdot C_6H_4 \cdot [C \equiv C]_n \cdot MR_3$ compounds, with the groups X chosen to give a spread of substituent types, are shown in Tables 1—4. In each

TABLE 1

Cleavage of $X \cdot C_6H_4 \cdot (C \equiv C)_2 \cdot SiEt_3$ compounds in aqueousmethanolic alkali at 29.6 °C

х	[NaOH] ª/M	10 ³ k/min ⁻¹	$k_{\rm rel}$	λ/nm
<i>p</i> -MeO	0.06	103	0.50	307
m-Me	0.06	170	0.825	298
	0.0255	66.2		299.6
н	0.0255	80.3	1.00	298
p-F	0.0255	103	1.28	297.8
<i>m</i> -Br	0.0255	206	2.56	$299 \cdot 2$
	0.01095	81.5		$299 \cdot 2$
p-NO ₂	0.01095	280	8.80	335

^a Concentration of the aqueous alkali, 1 vol. of which was added to 5 vol. of a methanolic solution of the silane.

case the observed first-order rate constant, k, is listed along with the rate, $k_{\rm rel}$, relative to that of the appropriate parent $Ph^{}[C=C]_{n}\cdot MR_{3}$ compound, the concentra-

¹ R. Eastmond and D. R. M. Walton, Chem. Comm., 1968, 204, and unpublished work. ² C. Eaborn and D. R. M. Walton, I. Organometallic Chem.

² C. Eaborn and D. R. M. Walton, J. Organometallic Chem., 1965, **4**, 217.

tion of the aqueous alkali which was mixed with a methanolic solution of the alkynyl compound, and the wavelength, λ , used in recording the progress of the

TABLE 2 Cleavage of $X \cdot C_6H_4 \cdot [C \equiv C]_2 \cdot GeEt_3$ compounds in aqueousmethanolic alkali at 29.6 °C

	momon		• •	
X	[NaOH] ª/M	10 ³ k/min ⁻¹	$k_{\rm rel}$	λ/nm
<i>p</i> -MeO	0.123	72.4	0.55	304
m-Me	0.123	113	0.86	298
н	0.123	131	1.00	296.5
<i>p</i> -F	0.123	149	1.14	295.5
m-Br	0.123	260	1.98	298
	0.0251	50.1		
p-NO ₂	0.0251	140	5.54	340

^a Concentration of aqueous alkali, 3 vol. of which was added to 5 vol. of a methanolic solution of the germane.

TABLE 3

Cleavage of $X \cdot C_6H_4 \cdot [C \equiv C]_3 \cdot SiEt_3$ compounds in aqueousmethanolic alkali at 29.6 °C

x	[NaOH] ª/M	10 ³ k/min ⁻¹	$k_{\rm rel}$	λ/nm
<i>ϕ</i> -MeO	0.01095	87.0	0.59	349
ĥ	0.01095	147	1.00	343
	0.0092	123		
p- F	0.0092	152	1.24	343
m-Br	0.0092	237	1.93	343
p -NO $_2$	0.01095	489	3.33	354

^a Concentration of aqueous alkali, 2 vol. of which were added to 25 vol. of a methanolic solution of the silane.

TABLE 4 Reactivities of different types of $X \cdot C_6H_4 \cdot [C=C]_n \cdot MR_3$ compounds at 29.6 °C

x	п	MR ₃	[NaOH] ^{<i>a</i>} /M	$H_2O/MeOH$ (v/v)	[10 ³ k/min ⁻¹
н	2	SiEt,	0.0255	1:5	80.3
н	1	SiMe.	0.0255	1:5	93.5
н	2	GeEt _a	0.123	1:5	16.5
m-Me	2	SiEt _a	0.123	1:5	346
н	3	SiEt.	0.0255	2:25	382
m-Br	2	SiEt ₃	0.0255	2:25	55.8
	a C.		- of the equipe		2

^a Concentration of the aqueous alkali used.

reaction. The water: methanol ratio in the medium was varied to take account of differing solubilities and reactivities.

It can reasonably be assumed that the mechanism of ³ R. W. Bott, C. Eaborn, and D. R. M. Walton, *J. Organometallic Chem.*, 1964, 1, 420. the cleavage is the same for all the $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot MR_3$ compounds. The simplest mechanism is one in which the MR₃ group is attacked by the nucleophile YO⁻ (Y = H or Me) to give a free carbanion [step (1)], which then rapidly acquires a proton from the solvent [step (2)].² It is probable that, as is known to be the case for alkali cleavage of benzyl-silicon bonds,⁴ the carbanion

$$\begin{array}{rcl} X \cdot C_{6}H_{4} \cdot [C \equiv C]_{n} \cdot MR_{3} + YO^{-} \longrightarrow \\ & X \cdot C_{6}H_{4} \cdot [C \equiv C]_{n-1} \cdot C \equiv C^{-} + R_{3}MOY & (1) \\ X \cdot C_{6}H_{4} \cdot [C \equiv C]_{n-1} \cdot C \equiv C^{-} + YOH \longrightarrow \\ & X \cdot C_{6}H_{4} \cdot [C \equiv C]_{n} \cdot H + YO^{-} & (2) \end{array}$$

is never wholly free, *i.e.*, that steps (1) and (2) are synchronous,² but this is relatively unimportant for consideration of substituent effects, since in either mechanism a substantial fraction of negative charge must develop at the terminal carbon atom, and it is the interaction of this with the group X which is important. For simplicity in presentation, we write as though the free carbanion were formed.

The following features of the results are noteworthy. (i) For a given set of $C_6H_5 \cdot [C=C]_n \cdot MEt_3$ compounds, the ease of cleavage increases with the change in n from 1 to 2 to 3. The effect, which is to be attributed to the inductive withdrawal of electrons by the additional alkynyl groups, is particularly marked for the change from n = 1 to n=2. An approximate assessment of the reactivity increase can be derived for the triethylsilyl compounds from data in Table 4 as follows: (a) The rate ratio $Ph (C \equiv C)_3 SiEt_3/m - Br C_6 H_4 (C \equiv C)_2 SiEt_3 is 382 : 55.8 in a$ mixture of methanol (25 vol.) and aqueous 0.0255Msodium hydroxide (2 vol.) at 29.6 °C; since the rate ratio $Ph \cdot [C \equiv C]_2 \cdot SiEt_3/m \cdot Br \cdot C_6H_4 \cdot [C \equiv C]_2 \cdot SiEt_3$ is $1 : 2 \cdot 56$, the ratio $Ph (C=C_3 SiEt_3/Ph (C=C_2 SiEt_3 is (382 \times 2.56)))$ $55 \cdot 8 = 17 \cdot 5$. (b) In a mixture of methanol (10 vol.) and aqueous 0.0255 m-sodium hydroxide (2 vol.) at 29.6 °C, the rate ratio $Ph (C \equiv C)_2 \cdot SiEt_3/Ph \cdot C \equiv C \cdot SiMe_3$ is 80·3/93·5; since Ph·C=C·SiMe₃/Ph·C=C·SiEt₃ = 277 (ref. 1), the ratio $Ph (C \equiv C)_2 \cdot SiEt_3 / Ph \cdot C \equiv C \cdot SiEt_3$ is $(277 \times C)^2 + C \equiv C \cdot SiEt_3$ $(80\cdot3)/(93\cdot5)$, *i.e.*, 236. Thus, if the medium change is neglected, the variations for the $Ph [C=C]_n SiEt_3$ compounds are as shown in Table 5. By use of several ratios

TABLE 5				
n	1	2	3	
Relative rate	1	240	4100	

from the Tables and from ref. 2 it can be shown that the rate ratio $Ph\cdot[C\equiv C]_2\cdot GeEt_3/Ph\cdot C\equiv C\cdot GeEt_3$ has a value of *ca.* 130.

(ii) The germanium compounds are somewhat less reactive and somewhat less sensitive to changes in X than the corresponding silicon compounds, as noted and discussed for the $X \cdot C_6H_4 \cdot C \equiv C \cdot MR_3$ series.² As might be expected in view of the close similarity between the systems, satisfactorily linear plots (not shown) are obtained if log $k_{\rm rel}$ values for $X \cdot C_6H_4 \cdot [C \equiv C]_n \cdot {\rm GeEt}_3$ are plotted against those for the corresponding $X \cdot C_6H_4 \cdot [C \equiv C]_n \cdot {\rm SiEt}_3$ compounds.

(iii) While the point for X = p-NO₂ deviates by more than the experimental error from a plot (not shown) of log k'_{rel} for X·C₆H₄·[C=C]₂·SiEt₃ against log k_{rel} for X·C₆H₄·[C=C]₃·SiEt₃, the separate plots of either log k'_{rel} or log k_{rel} against σ are satisfactory linear, as shown for log k_{rel} in the Figure. A similar plot for X·C₆H₄·-C=C·SiEt₃ compounds is likewise satisfactorily linear for

Plot of log k_{rel} for the cleavage of X·C₆H₄·[C=C]₃·SiEt₃ compounds against σ

the substituents considered here and for many additional substituents.²

The linearity of the plot in the Figure is especially revealing, because it means that substituent constants derived from reactions at centres attached to the ring or separated from it by one carbon atom can be used satisfactorily for a reaction generating a (localized) negative charge at a centre separated by five atoms from the ring. This casts doubts on treatments of substituent effects in conjugated systems which involve separation into two independent effects, (a) inductive effects (wholly or partly field effects) which depend on the distance between the substituent and the reaction site, and (b)resonance effects which depend on the effectiveness of conjugation between the sites, for only by an improbable coincidence should the variations in the two effects maintain the balance in the polyacetylene systems exactly as it exists in the Hammett σ-constants. (While we studied only a small number of substituents, they were carefully chosen to include a good range of substituent types and provide the maximum information on the balance of resonance and inductive effects. In our experience, if the results for the substituents we used correlate well with σ -constants for a reaction, those for a much larger range of substituents will also correlate satisfactorily with such constants.)

⁴ R. Alexander, C. Eaborn, and T. G. Traylor, J. Organometallic Chem., 1970, **21**, P65.

129

The best developed such treatment of substituent effects is that by Dewar and Grisdale.⁵ For a substituent attached at atom i and reaction site attached to atom j, they derive substituent constants σ_{ii} given by equation (3) in which F is a measure of the field set up by the substituent (assumed to constitute the whole of its inductive effect), M a measure of the combined mesomeric and π -inductive effects of the substituent (henceforth referred to, for convenience, as the mesomeric effect), r_{ij} the

$$\sigma_{ij} = F/r_{ij} + Mq_{ij} \tag{3}$$

distance between atoms i and j, and q_{ij} the formal charge at position j produced by attaching the CH_2^- group at position *i*. Values of *F* and *M* are derived from ordinary σ -constants for *meta*- and *para*-substituents in benzene derivatives by use of the appropriate r and q values.

In a variant on this treatment, the substituent constants, σ'_{ij} , are defined by equation (4), in which the mesomeric effect of the substituent is given by the

$$\sigma'_{ij} = F'/r_{ij} - M'\pi_{ij} \tag{4}$$

quantity $-M'\pi_{ij}$, where π_{ij} is the atom-atom polarizability of atoms i and j.⁵ For the systems considered by Dewar and Grisdale, differences between σ_{ij} and σ'_{ij} were very small, and they favour the use of equation (3).

Values of r_{ij} are expressed in units of the lengths of the C-C bonds in benzene, and for simplicity all the carboncarbon bonds in $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot MR_3$ compounds are assumed to be of this length. (Use of actual bond lengths would not lead to different conclusions in the discussions below.) Values of q_{ij} are obtained from the charge distributions shown in the Chart, derived by the Longuet-Higgins method.⁶

It is necessary first to decide which carbon atom in $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot SiEt_3$ compounds should be regarded as atom j. Dewar and Grisdale were concerned only with aromatic ring systems (although their treatment is not specific for such systems), and took atom j to be the ring

* The treatment gives even less satisfactory values of σ_{ij} if the terminal carbon atom is taken to be atom j.

⁵ M. J. S. Dewar and P. J. Grisdale, J. Amer. Chem. Soc., 1962, **84**, 3539, 3548.

carbon to which the side chain was attached.⁵ At first sight, atom j in the X·C₆H₄·[C=C]_n·SiEt₃ compounds might seem to be the terminal atom, the reaction site,* but the analogy between the equilibrium (5), from which the σ -constants are derived, and reaction (6), suggests that for $X \cdot C_6H_4 \cdot [C=C]_n \cdot SiEt_3$ compounds atom j should be taken as the (2n-2)th carbon from from the ring.

$$\begin{array}{c} X \cdot C_{6}H_{4} \cdot C(O) - OH + H_{2}O \rightleftharpoons \\ X \cdot C_{6}H_{4} \cdot C(O) - O^{-} + H_{3}O^{+} \quad (5) \\ X \cdot C_{6}H_{4} \cdot C \equiv C - SiEt_{3} + HO^{-} \rightleftharpoons \\ X \cdot C_{6}H_{4} \cdot C \equiv C^{-} + Et_{3}SiOH \quad (6) \end{array}$$

The relevant values of r and q_{ij} are then as in Table 6.

				TABLE	6			
p-X					m	X		
'n	1	2	3	4	1	2	3	4
r	2	4	6	8	1.73	3.6	5.5	7.5
q_{ij}	1/7	1/8	1/9	1/10	0	0	0	0

It is clear that for p-X groups the field effect should fall off markedly more rapidly than the mesomeric effect, so that substituent constants, such as ordinary σ constants, which are applicable for smaller values of nshould not be proportional to those for n = 3. (The rate of fall-off of the field effect relative to the mesomeric effect would be even greater if the former effect were taken to be proportional to $1/r_{ij}^2$, and this probability is not considered further, even though there are some indications that this relationship between the magnitude of the field effect and the ij separation is the more justifiable.7)

Values of σ_{ij} for the X groups in the X·C₆H₄·[C=C]₃·-SiEt₃ system, based on values of 6 for r_{ij} and 1/9 for q_{ij} , are listed in Table 7. The statistical analysis in Table 8

TABLE 7 Calculated σ-constants for X·C₀H··[C=C]₀·SiEt₀

0	aroundeed	0 00110000		- ~64 L	013 011	-3
\mathbf{x}	F	M	F'	M'	σ_{ij}	σ'_{ij}
¢-OMe	+0.20	-2.58	+0.13	-3.36	-0.254	-0.106
ĥ	0.00	0.00	0.00	0.00	0.00	0.00
<i>p</i> -F	+0.58	-1.61	+0.56	-2.10	-0.083	-0.006
p-NO,	+1.23	+1.14	+1.26	+1.48	+0.332	+0.211
m-Br	+0.68	-0.77	+0.66	-1.00	+0.124	+0.088

TABLE 8

Statistical analysis of correlations of log k_{rel} for $X \cdot C_6 H_4 \cdot [C \equiv C]_3 \cdot SiEt_3$ compounds with substituent constants

Constants	p I to pass	Intercept	Correlation coefficient	RD/RMS
(a) constraints	1 to pass	unougn ongin		
σ	0.694	0.00	0.994	0.110
G11	1.384	0.00	0.964	0.419
σij	1.947	0.00	0.984	0.165
(b) Without co	nstraint			
σ	0.698	-0.004	0.993	0.108
a u	1.245	0.101	0.969	0.220
σ'_{ij}	1.798	0.038	0.989	0.127

⁶ H. C. Longuet-Higgins, J. Chem. Phys., 1950, 18, 265, 275,

283. ⁷ M. J. S. Dewar and A. P. Marchand, J. Amer. Chem. Soc., 1966, 88, 3318.

reveals that the correlation with σ_{ij} is markedly less satisfactory than that with σ -constants, as judged by the quantity RD/RMS, which is thought to be the best measure of the dispersion.^{8,9} The superiority of the σ -constants is greater when the correlation line is constrained to pass through the origin, and we believe such constraint is justified since the origin is the only point for which there can, by definition, be no doubt about the value of the substituent constant.

For completeness we also consider the use of equation (4), and Table 9 gives values of π_{ij} for *para*-substituents along with those of n and r. The variation in the ratio r/π_{ij} is smaller than that of the ratio r/q_{ij} and it follows that σ'_{ij} values (see Table 7), calculated according to

		TABLE 9		
n	1	2	3	4
r	2	4	6	8
π_{ij}	-0.105	-0.0645	-0.0466	-0.0363

equation (4), must fit our results better than do σ_{ij} values. The analysis in Table 8 shows that this is indeed the case, although correlation is still somewhat poorer than that with simple σ -constants. It is noteworthy that while use of q_{ij} leads to much the same results as use of π_{ii} in the naphthalene and biphenyl systems considered by Dewar and Grisdale,⁵ q_{ij} and π_{ij} cannot be regarded generally as interchangeable, since the atom-atom polarizability, π_{ij} , is the same in both directions, whereas q_{ji} can differ substantially from q_{ij} , as shown for the $Ph (C \equiv C)_n H$ systems in Table 10. [With the naph-

		TABLE 10		
n	1	2	3	4
q_{ij}	1/7	1/8	1/9	1/10
q_{ji}	1/7	1/11	1/15	1/19

thalene systems, Dewar and Grisdale mistakenly used q_{ji} instead of q_{ij} values.⁵ This was unimportant in that system,⁹ but it is noteworthy that a similar erroneous use of q_{ji} in the Ph·[C=C]_n·H system would lead to a more satisfactory set of σ_{ii} constants.]

The charge distribution which results when a CH₂⁻ group is attached to a conjugated system seems to us to provide an attractive model for assessing the resonance effects of substituents, and there is no reason to believe that the mesomeric effect of a substituent in position ion the reaction centre j should always be the same as that of the substituent at position j on a reaction centre at *i*, as is implied by use of π_{ij} . However, from our results we should have to conclude that if the Dewar-Grisdale treatment is valid then π_{ij} is better than q_{ij} as a measure of the transmission of mesomeric effects.

There are other examples of conjugated systems for which the simple σ -constants give better correlations than the calculated σ_{ij} -values, although the inferiority of the latter is not necessarily as marked as it is in the $X \cdot C_6 H_4[C \equiv C]_3 \cdot SiEt_3$ system. For example, the plot of ⁸ P. R. Wells, S. Ehrenson, and R. W. Taft, Prog. Phys. Org.

J. Chem. Soc. (B), 1971

the pK_a's of the acids 3'- and 4'-X·C₆H₄·C₆H₄·C₂H-4 against σ_{ij} -constants ($r_{4'4} = 5$; $q_{4'4} = 1/31$), which has been used as a confirmation of the validity of the calculation of σ_{ii} -constants,⁵ is less satisfactory than that against simple σ -constants. (The latter plot, while showing deviations, possibly because of uncertainties in the pK_a values, is actually better than the corresponding plot for the benzoic acids, X·C₆H₄·CO₂H, measured under identical conditions.¹⁰) Again, pK_a 's ¹¹ in the series (a) p-X·C₆H₄·C=C-PyH⁺ and (b) transp-X·C₆H₄·CH=CH-PyH⁺ (where Py = 4-C₅H₄N) correlate well with σ_p -constants.

Our results suggest that in conjugated systems the variations in the transmission of inductive and conjugative effects are not as independent as is assumed in treatment of the Dewar–Grisdale type. (Dewar and his collaborators have themselves discussed the difficulties created by the simplifying assumptions involved in a two-parameter treatment, and have outlined various modes of transmission of electronic effects which can operate alongside simple field and classical mesomeric effects.^{5,7,12}) In particular, in the Dewar-Grisdale treatment the inductive effects are assumed to be exclusively field effects, which would be identical with those in, say, an aliphatic system involving similar separation and orientation of the substituent and the reaction site, but there are good arguments in favour of the view that such a field effect contributes a minor part of the total inductive effect between conjugated centres, and that the major part is contributed by some transmission of the polar effect through the π -electron system ¹³ (see also ref. 12). Such transmission between two centres in a conjugated system might vary in much the same way as the normal mesomeric effect, so that the balance between the total inductive effect and the mesomeric effect would vary much less than between the simple field effect and the mesomeric effect.

EXPERIMENTAL

The preparation and properties of $X \cdot C_6 H_4 \cdot [C \equiv C]_n \cdot MEt_3$ compounds will be described elsewhere.1

Rate Studies .--- The spectrophotometric method described for alkali cleavage of $X \cdot C_6 H_4 \cdot C \equiv C \cdot MR_3$ compounds was used.² The spectra of reaction solutions after 10 half-lives were identical with those of the corresponding cleavage products, aryl-buta-1,3-diynes and -hexa-1,3,5-triynes, in the reaction media. No change occurred in the u.v. absorption spectra of the latter solutions during times equivalent to 10 halflives of the cleavages.

We thank the S.R.C. for general support and for a Research Studentship (for R. E.), the Royal Society for the loan of apparatus, and Professor J. N. Murrell and Mr. J. W. E. Lewis for calculations of atom-atom polarizabilities.

[9/1388 Received, August 13th, 1969]

Chem., 1966, 6, 147. Eaborn and A. Fischer, J. Chem. Soc. (B), 1969, 152.

¹⁰ E. Berliner and E. A. Blommers, J. Amer. Chem. Soc., 1951, 73, 2481; 1960, 82, 6427.

¹¹ A. R. Katritzky, D. J. Short, and A. J. Boulter, J. Chem. Soc., 1960, 1516.
¹² A. Adcock and M. J. S. Dewar, J. Amer. Chem. Soc., 1967, 89, 379; M. J. S. Dewar and T. G. Squires, *ibid.*, 1968, 90, 212.
¹³ P. R. Wells, 'Linear Free Energy Relationships,' Academic Development of New York, 1969. Press, London and New York, 1968, p. 52.