

Available online at www.sciencedirect.com

Polyhedron 25 (2006) 1864-1872

Metal complexes of 21-(4-*tert*-butyl-benzenesulfonamido)-5,10,15, 20-tetraphenyl-porphyrin: $Ga(N-p-NSO_2C_6H_4{}^tBu-tpp)(OH)$, $Tl(N-p-NSO_2C_6H_4{}^tBu-tpp)(O_2CCF_3)$ and $Zn(N-p-NSO_2C_6H_4{}^tBu-tpp)$ [tpp = 5,10,15,20-tetraphenylporphyrinate]

Wei-Zhi Shil^a, Kuan-Yu Cho^a, Ching-Wen Cheng^a, Jyh-Horung Chen^{a,*}, Shin-Shin Wang^{b,*}, Feng-Ling Liao^c, Jo-Yu Tung^d, Hsi-Ying Hsieh^d, Shanmugam Elango^e

^a Department of Chemistry, National Chung-Hsing University, Taichung 40227, Taiwan
^b Union Chemical Laboratories, Hsin-Chu 300, Taiwan
^c Department of Chemistry, National Tsing-Hua University, Hsin-Chu 300, Taiwan
^d Chung Hwa College of Medical Technology, Tainan 717, Taiwan
^e Institute of Chemical and Engineering Sciences, Singapore 627833, Singapore

Received 20 September 2005; accepted 7 December 2005 Available online 20 January 2006

Abstract

The crystal structures of *trans*-hydroxo-*N*-*p*-*tert*-butylbenzenesulfonylimido-*meso*-tetraphenylporphyrinatogallium(III) 0.5 aqua and 0.5 methanol solvate [Ga(*N*-*p*-NSO₂C₆H₄'Bu-tpp)(OH) \cdot 0.5MeOH \cdot 0.5H₂O; **2** \cdot 0.5MeOH \cdot 0.5H₂O], *cis*-trifluoroacetato-*N*-*p*-*tert*-butylbenzenesulfonylimido-*meso*-tetraphenylporphyrinatothallium(III) [Tl(*N*-*p*-NSO₂C₆H₄'Bu-tpp)(O₂CCF₃); **3**] and *N*-*p*-*tert*-butylbenzenesulfonylimido-*meso*-tetraphenylporphyrinatozinc(II) 0.7 methanol solvate [Zn(*N*-*p*-NSO₂C₆H₄'Bu-tpp) \cdot 0.7MeOH; **4** \cdot 0.7MeOH], were determined. The coordination sphere around Tl³⁺ ion in **3** is a distorted square-based pyramid in which the apical site is occupied by a chelating bidentate CF₃CO₂⁻ group, whereas for the Ga³⁺ ion in **2**, it is a distorted trigonal bipyramid with N(2), N(4), and O(1) lying in the equatorial plane. The geometry around Zn²⁺ in **4** is a distorted square planar. The free energy of activation at the coalescence temperature T_c for the intermolecular trifluoroacetate exchange process for **3** in CD₂Cl₂ is found to be $\Delta G_{223}^{\ddagger} = 46.3$ kJ/mol through ¹⁹F NMR variable temperature measurements.

In the slow-exchange region, the CF₃ and carbonyl (CO) carbons of the CF₃CO₂⁻group of **3** in CD₂Cl₂ are separately located at δ 115.9 [³*J*(Tl⁻¹³C) = 155 Hz] and 160.2 [²*J*(Tl⁻¹³C) = 81 Hz] at -90 °C. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Thallium; X-ray diffraction; Gallium; Dynamic NMR; TFA ligands

1. Introduction

Corresponding authors.

Metalloporphyrins with a bridged structure between the central metal and one of the four pyrrole nitrogens have drawn much attention in recent times bridged metalloporphyrins with M–NX–N linkages $[X = Ts = tosyl, p-COC_6H_4NO_2 (p-nitrobenzoyl), or COC_6H_5 (benzamido)]$ have so far been reported [1–7]. Upon replacement of CH₃ of tosyl by a bulkier and heavier 'Bu group, the free base *N-p*-HNSO₂C₆H₄CH₃-Htpp (tpp = dianion of *meso*-tetraphenylporphyrin) became 21-(4-*tert*-butyl-benzenesulfonamido)-5,10,15,20-tetraphenyl-porphyrin *N-p*-HNSO₂-C₆H₄'Bu-Htpp (1). The d¹⁰ configuration permits a wide variety of geometries and coordination numbers. However

E-mail address: jyhhchen@dragon.nchu.edu.tw (J.-H. Chen).

^{0277-5387/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2005.12.006

there were no X-ray structural data available for the metal ion [M(II) and M(III)] complexes of N-p-HNSO₂C₆H₄^tBu-Htpp (1). The effect of coordination of a variety of d¹⁰ metals namely zinc(II), gallinum(III) and thallium(III) on pophyrin macrocycles is of great interest, because the structural analysis of these metal complexes could be expected to discover the effects due to the incorporation of d¹⁰ metal ions (i.e., Zn²⁺, Ga³⁺ and TI³⁺) into the highly distorted and relatively rigid coordination environment provided by the aminated porphyrin ligand 1. The bulky ^tBu group in this system enhances the crystallization of metal these complexes.

In this paper, we described the synthesis and X-ray structural investigation on the metallation of 1 leading to mononuclear complexes of trans-hydroxo-N-p-tert-butylbenzenesulfonylimido-meso-tetraphenylporphyrinatogallium(III) 0.5 aqua and 0.5 methanol solvate [Ga(N-p-NSO₂C₆H₄^tBu-tpp) $(OH) \cdot 0.5MeOH \cdot 0.5H_2O; \mathbf{2} \cdot 0.5MeOH \cdot 0.5H_2O], cis-tri$ fluoroacetato-N-p-tert-butylbenzenesulfonylimido-meso-tetraphenylporphyrinatothallium(III) $[Tl(N-p-NSOC_6H_4^tBu$ tpp)(O₂CCF₃); **3**] and *N*-*p*-tert-butylbenzenesulfonylimidomeso-tetraphenylporphyrinatozinc(II) 0.7 methanol solvate $[Zn(N-p-NSO_2C_6H_4^tBu-tpp) \cdot 0.7MeOH; 4 \cdot 0.7MeOH].$ It is observed that the ionic radius increases from 0.69 Å for Ga^{3+} to 0.74 Å for Zn²⁺ and to 1.025 Å for Tl³⁺[8]. Furthermore, we tried to figure out the relative positions of the $CF_3CO_2^-$ (or OH⁻) and $N^{-t}BuBS$ (^tBuBS = 4-tert-butylbenzenesulfonyl = SO_2C_6 - $H_4^{t}Bu$) groups coordinated to the metal atom lead to a *cis* configuration in 3 and a *trans* configuration in 2 that might depend on the ionic radius of the Tl^{3+} and Ga^{3+} . In addition, the trifluoroacetato (TFA) exchange of $Tl(tpp)(O_2CCF_3)$ observed in THF- d_8 prompted us to investigate a similar intermolecular exchange for complex 3 in CD₂Cl₂ by ¹⁹F and ¹³C dynamic NMR methods [9].

2. Experimental

2.1. N-p-HNSO₂C₆ H_4^{t} Bu-Htpp (1)

A mixture of NaN₃ (1 g, 1.54×10^{-2} mol) in distilled water (2 cm³) and N-4-tert-butylbenzenesulfonyl chloride (1 g, 4.31×10^{-3} mol) in acetone (20 cm³) was stirred for 1 h. After concentration, the residue was taken in CH₂Cl₂ and collected by filtration to remove the excess of NaN₃. The CH₂Cl₂ layer contains p^{-t} Bu-C₆H₄-SO₂N₃. A solution of Zn(tpp) (0.27 g, 3.04×10^{-4} mol) and the above ^tBu- C_6H_4 -SO₂N₃ in CH₂Cl₂ (200 cm³) in a stoppered 250 mL Erlenmeyer flask was left for ca. 8 h in the sunlight. After that to this solution was added $0.5 \text{ N HCl} (250 \text{ cm}^3)$ with vigorous shaking for 0.5 h. The organic layer was separated, solid ammonium carbonate was added to it, and then dried with anhydrous Na₂SO₄. The excess (NH₄)₂CO₃ and Na₂SO₄ were removed by filtration. After concentration, the residue was dissolved in a minimum of CH₂Cl₂ and chromatographed on silica gel (100 g, 70-230 mesh). The desired compound was eluted with ethyl acetate- CH_2Cl_2 [1:2 (v/v)] as dark brown band on silica gel. Removal of the solvent and recrystallization from CH₂Cl₂–MeOH [1:3 (v/v)] gave the bluish-purple solid of **1** (0.17 g, 2.06 × 10⁻⁴ mol, 68%). ¹H NMR (599.95 MHz, CDCl₃, 20 °C): δ 8.97 [d, H_β, ³*J*(H–H) = 5 Hz]; 8.93 [d, H_β, ³*J*(H–H) = 5 Hz]; 8.81 (s, H_β); 8.46 [d, ³*J*(H–H) = 7 Hz] and 8.10 [d, ³*J*(H–H) = 8 Hz] for *ortho* protons; 7.91(s, H_β); 7.87–7.81 (m) and 7.78–7.73 (m) for *meta* and *para* protons; 6.65 [d, [']BuBS-H_{3,5}, ³*J*(H–H) = 8 Hz], where [']BuBS = 4-*tert*-butylbenzenesulfonyl; 4.94 [d, [']BuBS-H_{2,6}, ³*J*(H–H) = 8 Hz]; 1.13 (s, *t*-butyl protons); 0 (s, NH). FAB-MS, *m/z* (assignment, rel intensity): 826 ([*N*-*p*-HNSO₂C₆H₄[']Bu-Htpp)]⁺, 100), 614([(H₂tpp)]⁺, 93.89). UV/visible spectrum, λ (nm) [$\varepsilon \times 10^{-3}$ (M⁻¹ cm⁻¹)] in CH₂Cl₂: 320 (24.7), 433 (339), 548 (15.0), 584 (15.9), 638 (13.7).

2.2. $Ga(N-p-NSO_2C_6H_4^{t}Bu-tpp)(OH)$ (2)

Free base N-p-HNSO₂C₆H₄^tBu-Htpp (1) (0.05 g, 6.05×10^{-5} mol) and Ga₂O₃ (0.1 g, 5.34×10^{-4} mol) were refluxed for 12 h in 100 cm³ of acetic acid containing sodium acetate (0.05 g). After removal of the solvent (HOAc) under reduced pressure, the residue was dissolved in CH₂Cl₂ and then dried over Na₂SO₄. After filtration, the filtrate was rotavaped and recrystallization from CH₂Cl₂/ MeOH [1:3 (v/v)] afforded a purple solid of 2 (0.036 g, 3.95×10^{-5} mol, 65%). Compound 2 was dissolved in CH₂Cl₂ and layered with MeOH to get purple crystals of **2** for single crystal X-ray analysis. ¹H NMR $(599.95 \text{ MHz}, \text{ CDCl}_3, 20 \text{ °C}): \delta 9.22 \text{ [s, H}_{B}(4,5)\text{]}, \text{H}_{B}(a,b)$ represents the two equivalent β -pyrrole protons attached to carbons a and b, respectively; 8.75 [d, $H_{B}(10,19)$, ${}^{3}J(H-H) = 4.8 \text{ Hz}$; 8.71 [d, H₈(9,20), ${}^{3}J(H-H) = 4.8 \text{ Hz}$]; 7.85 [s, $H_{B}(14,15)$]; 8.36 [s, o'-H(38,40)], o'-H represents ortho phenyl protons; 8.06 [d, o'-H(34,44), ${}^{3}J(H-H) =$ 4.3 Hz]; 8.34 [m, o-H(26,28)]; 8.29 [d, o-H(22,32), ${}^{3}J(H-H) = 5.4 \text{ Hz}$; 7.74–7.85 (m) for meta and para protons; 6.58 [d, ^tBuBS-H_{3.5}, or H(47,49), ${}^{3}J(H-H) =$ 8.4 Hz]; 4.72 [d, ^tBuBS-H_{2.6}, or H(46,50), ³J(H-H) = 8.4 Hz]; 1.03 (s, *t*-butyl protons); -1.98 (s, OH). FAB-MS, (assignment, rel intensity): m/z894 ([Ga(*N*-*p*- $NSO_2C_6H_4'Bu-tpp)$ ⁺, 11.19), 892 ([Ga(*N-p*-NSO₂C₆H₄- t Bu-tpp) – 2H]⁺, 11.90), 681 ([Ga(tpp)-H]⁺, 49.40), 154 ([NBA + H]⁺, 68.01). UV/visible spectrum, λ (nm) [$\epsilon \times 10^{-3}$ (M⁻¹ cm⁻¹)] in CH₂Cl₂: 434 (315), 547 (11.4), 585 (14.6), 634 (4.3).

2.3. $Tl(N-p-NSO_2C_6H_4^{t}Bu-tpp)(O_2CCF_3)$ (3)

A mixture of Tl(O₂CCF₃)₃ (0.07 g, 1.29×10^{-4} mol) in MeOH (10 cm³) and *N*-*p*-HNSO₂C₆H₄^{*t*}Bu-Htpp (0.05 g, 6.05×10^{-5} mol) in CH₂Cl₂ (20 cm³) was refluxed in CH₃CN (50 cm³) for 3 h. After concentrating, the residue was dissolved in CH₂Cl₂, dried with anhydrous Na₂SO₄ and filtered. The filtrate was concentrated and recrystallized from CH₂Cl₂–MeOH [1:5 (v/v)] yielding blue solid of **3** (0.035 g, 3.07×10^{-5} mol, 50.7%) which was again dissolved in CH₂Cl₂ and layered with MeOH to get blue crystals for single crystal X-ray analysis. ¹H NMR (299.96 MHz, CD₂Cl₂, 20 °C): δ 9.16 [d d, H_B(10.19), ${}^{4}J(\text{Tl}-\text{H}) = 17.5 \text{ Hz} \text{ and } {}^{3}J(\text{H}-\text{H})] = 4.8 \text{ Hz}; 9.03 \text{ [d d]},$ $H_{\beta}(9,20)$, ${}^{4}J(TI-H) = 10.3 \text{ Hz} \text{ and } {}^{3}J(H-H) = 4.8 \text{ Hz}$; 8.81 [d, H_B(4,5), ${}^{4}J(\text{Tl}-\text{H}) = 90.0 \text{ Hz}]; 7.03 [s, H_{B}(14,15)];$ 8.38 [d, o-H(26,32), ${}^{3}J$ (H–H) = 5.4 Hz]; 8.15 [d, o-H(22, 28), ${}^{3}J(H-H) = 6.6 \text{ Hz}$; 7.80–7.90 (m) for meta and para protons; 7.13 [d, ^{*t*}BuBS-H_{3,5}, or H(47,49), ³J(H–H) = 8.0 Hz]; 6.13 [d, ^{*t*}BuBS-H_{2,6}, or H(46,50), ³J(H–H) = 8.0 Hz]; 1.19 (s, *t*-butyl protons). ¹⁹F NMR (564.49 MHz, CD₂Cl₂, 20 °C): δ -73.50 (s). FAB-MS, m/z (assignment, rel intensity): 1028 ($[Tl(N-p-NSO_2C_6H_4^{t}Bu-tpp)]^+$, 39.58), 826 ($[HN-p-NSO_2C_6H_4^{t}Bu-Htpp]^+$, 54.23), 154 ([NBA+H]⁺, 100). UV/visible spectrum, λ (nm) [$\varepsilon \times 10^{-3}$ (M⁻¹ cm⁻¹)] in CH₂Cl₂: 336 (18.2), 447 (259), 556 (6.55), 608 (14.6).

2.4. $Zn(N-p-NSO_2C_6H_4^{t}Bu-tpp)$ (4)

Compound **4** was prepared in the same way as described for Tl(*N*-*p*-NSO₂C₆H₄'Bu-tpp)(OAc) using Zn(OAc)₂ in 80% yield [14]. Compound **4** was dissolved in CH₂Cl₂ and layered with MeOH and purple crystals of **4** · 0.7MeOH were obtained for single crystal X-ray analysis. ¹H NMR (599.95 MHz, CDCl₃, 20 °C): δ 8.96 [d, H_β(7,18), ³*J*(H–H) = 4.2 Hz]; 8.90 [d, H_β(8,17), ³*J*(H–H) = 4.8 Hz]; 8.82 [s, H_β(12,13)]; 8.46 [d, *o*-H(32,34), ³*J*(H–H) = 7.2 Hz]; 8.10 [d, *o*-H(28,38), ³*J*(H–H) = 7.2 Hz]; 8.21 (bs) and 7.89 (bs) for the other set of *ortho* protons (*o*'-H); 7.85 [t,³*J*(H–H) = 7.8 Hz], 7.74 (m) and 7.68 (bs) for *meta* protons; 7.81 [t, *para* H, ³*J*(H–H) = 7.8 Hz]; 6.89 [d, 'BuBS-H_{3,5}, or

Table 1

Crystal data for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O, 3 and $4 \cdot 0.7$ MeOH

H(47,49), ${}^{3}J$ (H–H) = 8 Hz]; 5.58 [d, ${}^{t}BuBS-H_{2,6}$, or H(46,50), ${}^{3}J$ (H–H) = 8 Hz]; 1.15 (s, *t*-butyl protons). ESI-MS, m/z (assignment, rel intensity): 888 ([Zn(*N*-*p*-NSO₂C₆H₄'Bu-tpp) + H]⁺, 22.08), 690 ([Zn(tpp)⁺N – 2H]⁺, 100). UV/visible spectrum, λ (nm) [$\epsilon \times 10^{-3}$ (M⁻¹ cm⁻¹)] in CH₂Cl₂: 322 (20.5), 437 (299), 557 (9.9), 603 (16.1).

2.5. Spectroscopy

Proton and ¹³C NMR spectra were recorded at 299.95 (or 599.95) and 75.43 (or 150.87) MHz, respectively, on Varian VXR-300 (or Varian Unity Inova-600) spectrometers locked on deuterated solvent, and referenced to the solvent peak. Proton NMR is relative to CD₂Cl₂ or CDCl₃ at $\delta = 5.30$ or 7.24 and ¹³C NMR to the center line of CD₂Cl₂ or CDCl₃ at $\delta = 53.6$ or 77.0. ¹⁹F NMR spectra were measured in CD₂Cl₂ at 564.49 MHz in a Varian Unity Inova-600 spectrometer. ¹⁹F NMR data are internally referenced to CFCl₃. The temperature of the spectrometer probe was calibrated by the shift difference of the methanol resonance in the ¹H NMR spectrum. HMQC (heteronuclear multiple quantum coherence) was used to correlate protons and carbon through one-bond coupling and HMBC (heteronuclear multiple bond coherence) for two- and three-bond proton-carbon coupling. nuclear Overhauser effect (NOE) difference spectroscopy was employed to determine the ${}^{1}H{}^{-1}H$ proximity through space over a distance of up to about 4 Å.

Positive ion mode ESI mass spectra were acquired at room temperature on a ThermoFinnigan LCQ Advantage mass spectrometer. The positive-ion fast atom bombard-

Empirical formula	$C_{54} = 50 H_{45} GaN_5 O_4 S$	$C_{56}H_{41}F_3N_5O_4ST1$	C _{54 70} H _{43 80} N ₅ O _{2 70} SZn	
*	$(2 \cdot 0.5 \text{MeOH} \cdot 0.5 \text{H}_2\text{O})$	(3)	$(4 \cdot 0.7 \text{MeOH})$	
Formula weight	935.73	1141.37	911.78	
Space group	$P\overline{1}$	$P\bar{1}$	$P2_1/c$	
Crystal system	triclinic	triclinic	monoclinic	
a (Å)	10.6962(6)	12.2694(7)	14.8830(18)	
b (Å)	13.3596(8)	14.4713(8)	12.2593(16)	
<i>c</i> (Å)	18.3789(11)	14.5566(8)	25.427(3)	
α (°)	72.373(1)	79.540(1)	90	
β (°)	87.530(1)	70.512(1)	100.010(2)	
γ (°)	67.930(1)	86.048(1)	90	
$V(\text{\AA}^3)$	2312.1(2)	2395.9(2)	4568.7(10)	
Ζ	2	2	4	
<i>F</i> (000)	972	1136	1916	
$D_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.344	1.582	1.338	
μ (Mo K α) (mm ⁻¹)	0.693	3.480	0.635	
S	1.003	1.006	1.082	
Crystal size (mm ³)	$0.30 \times 0.25 \times 0.25$	$0.50 \times 0.20 \times 0.10$	$0.68 \times 0.32 \times 0.18$	
$2\theta_{\max}$ (°)	56.68	56.60	52.16	
<i>T</i> (K)	100(2)	100(2)	295(2)	
Number of reflections measured	11429	11836	9005	
Number of reflections observed	8285	$10564~(I \ge 2\sigma(I))$	5133 ($I > 2\sigma(I)$)	
R_1^{a}	0.0522	0.0292	0.0493	
wR_2^{b}	0.1476	0.0711	0.1261	

$${}^{a} R_{1} = \left| \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}||.$$

$${}^{b} wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2} \right]^{1/2}$$

Table 2 Selected bond lengths (Å) and angles (°) for compounds $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O. 3 and $4 \cdot 0.7$ MeOH

- /			
$Ga(N-p-NSO_2C_6H_4)$	Bu-tpp)(OH) · 0.	.5MeOH · 0.5H ₂ O	
$(2 \cdot 0.5 \text{MeOH} \cdot 0.5 \text{H})$	2O)		
Bond lengths			
Ga(1) - N(1)	2.305(2)	Ga(1)–N(4)	1.959(2)
Ga(1)–N(2)	1.914(2)	$Ga(1) \cdots N(5)$	2.638(2)
Ga(1)-N(3)	2.048(2)	Ga(1)–O(1)	1.835(2)
Bond angles			
O(1)-Ga(1)-N(1)	90.40(9)	Ga(1)-N(4)-N(5)	102.95(16)
O(1)-Ga(1)-N(2)	118.66(10)	N(4)-Ga(1)-N(1)	84.38(10)
O(1)-Ga(1)-N(3)	95.65(10)	N(4)-Ga(1)-N(2)	127.18(10)
O(1)-Ga(1)-N(4)	114.13(10)	N(4)-Ga(1)-N(3)	83.33(9)
Ga(1)-N(4)-S(1)	140.11(14)		
$Tl(N-p-NSO_2C_6H_4^{t}H_2)$	Bu-tpp)(O ₂ CCF ₃) (3)	
Bond lengths		/ (-)	
$T_{1}(1) - O(3)$	2.426(2)	T1(1)-N(2)	2.120(2)
$T_{1}(1) - O(4)$	2.427(2)	T1(1) - N(3)	2.329(2)
TI(1) - N(1)	2.363(2)	$TI(1) \cdots N(4)$	2.880(2)
		Tl (1)–N(5)	2.081(2)
Bond angles			
O(3)-Tl(1)-N(1)	136.05(8)	O(4)-Tl(1)-N(1)	83.83(8)
O(3)-Tl(1)-N(2)	93.64(9)	O(4)-Tl(1)-N(2)	102.20(9)
O(3)-Tl(1)-N(3)	103.77(9)	O(4)-Tl(1)-N(3)	157.44(9)
O(3)-Tl(1)-N(5)	110.86(9)	O(4)-Tl(1)-N(5)	97.07(8)
O(3)-Tl(1)-O(4)	54.30(8)	Tl(1)-N(5)-N(4)	110.84(17)
$Zn(N-p-NSO_2C_6H_4^{t})$	Bu-tpp) · 0.7Me0	OH (4 · 0.7MeOH)	
Bond lengths			
Zn-N(2)	2.074(3)	Zn-N(5)	1.983(3)
Zn-N(3)	1.943(3)	Zn-O(3)	2.342(6)
Zn-N(4)	2.060(3)	$Zn \cdots N(1)$	2.627(6)
Bond angles			
N(5)-Zn-N(2)	90.08(11)	Zn-N(5)-N(1)	100.50(18)
N(5)-Zn-N(3)	171.74(11)	Zn-N(5)-S	144.29(16)
N(5)-Zn-N(4)	88.70(11)		

ment mass spectrum (FAB MS) was obtained in a nitrobenzyl alcohol (NBA) matrix using a JEOL JMS-SX/SX 102A mass spectrometer. UV/visible spectra were recorded at 20 °C on a HITACHI U-3210 spectrophotometer.

2.6. Crystallography

Table 1 presents the crystal data as well as other information for $2 \cdot 0.5 \text{MeOH} \cdot 0.5 \text{H}_2\text{O}$, **3**, and $4 \cdot 0.7 \text{MeOH}$. Measurements were taken on a Bruker AXS SMART-1000 diffractometer using monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were made for $2 \cdot 0.5 \text{MeOH} \cdot 0.5 \text{H}_2\text{O}$ and **3**. The sADABS absorption corrections were made for $4 \cdot 0.7 \text{MeOH}$. The structures were solved by direct methods (SHELXTL PLUS) and refined by the full-matrix least-squares method. All non-hydrogen atoms were refined with anisotropic thermal parameters, whereas all hydrogen atoms were placed in calculated positions and refined with a riding model. Table 2 lists selected bond distances and angles for these three complexes.

3. Results and discussion

3.1. Molecular structures of $2 \cdot 0.5 MeOH \cdot 0.5 H_2O$, 3 and $4 \cdot 0.7 MeOH$

The X-ray structures are depicted in Fig. 1a for the complex Ga(N-p-NSO₂C₆H₄^tBu-tpp)(OH) \cdot 0.5MeOH \cdot 0.5H₂O $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O), in Fig. 1b for Tl-(or $(N-p-NSO_2C_6H_4^{t}Bu-tpp)(O_2CCF_3)$ **3** and in Fig. 1c for Zn- $(N-p-NSO_2C_6H_4^{t}Bu-tpp) \cdot 0.7MeOH (4 \cdot 0.7MeOH)$. Their structures are a five-coordinate gallium, a six-coordinate thallium, and a four-coordinate zinc, having three nitrogen atoms of the porphyrins and one extra nitrogen atom of the $NSO_2C_6H_4^{t}Bu$ fragment in common, but they are different with one more chelating bidentate $CF_3CO_2^{-1}$ ligand for 3 in the axial site and one more axial OH^- ligand for 2. The metal-ligand bond distances, i.e., from Ga(III), Tl(III), and Zn(II) atoms to the ligand and the angles are summarized in Table 2. The bond distances are Ga(1)-O(1) = 1.835(2) Å and the mean Ga(1)-N(p) = 1.969(2) Å for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O; for 3, the similar values are Tl(1)-O(3) = 2.426(2) A, Tl(1)-O(4) = 2.427(2) A and the mean Tl(1)-N(p) = 2.223(2) Å. The interaction of the trifluoroacetate with thallium is chelating bidentate. This kind of bidentate interaction was previously observed for $Tl(tpp)(O_2CCF_3)$ with Tl-O(1) = 2.309(7) Å and Tl-O(2) = 2.64(1) Å [9]. Hence, the geometry around Tl is a distorted square-base pyramid in which the apical site is occupied by a chelating bidentate CF₃CO₂⁻ group. The bond distance (Å) of Zn-O(3) is 2.342(6) Å and the mean Zn-N(p) = 2.015(3) Å for $4 \cdot 0.7 \text{MeOH}$. The Zn-O(3)-(MeOH) distance of 2.342(6) Å is longer than the sum of the covalent radii of Zn and O (1.93 Å) but is shorter than the sum of the Van der Waals radii of Zn and O (2.90 Å) [8]. This longer $Zn \cdots O(3)$ contact is too long to be considered as a true coordinated bond and may be viewed as a secondary intermolecular interaction. Hence, the geometry around Zn^{2+} is a distorted square planar in 4. The observed H(3) \cdots O(1) and O(1) \cdots O(3) distances were 2.16 and 2.69 Å, respectively. These distances fall below those expected from Van der Waals distances of 2.60 and 2.80 Å, respectively. The O(1)-H(3)-O(3) angle was 158.5° and its deviation from linearity was not too severe. Therefore, a hydrogen bond exists between H(3) and the O(1) atom in 4.

The distortion in five-coordinate complexes can be quantified by the "degree of trigonality" which is defined as $\tau = (\beta - \alpha)/60$, where ' β ' is the largest and ' α ' the second largest of the L_{basal}-M-L_{basal} angles [10,11]. The limiting values are $\tau = 0$ for an ideal tetragonal geometry and $\tau = 1$ for an ideal trigonal-bipyramid. In the present case, we find $\beta = 167.66(9)^{\circ}$ [N(1)-Ga-N(3)] and $\alpha =$ 127.18(10)° [N(2)-Ga(1)-N(4)] for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O. Thus, a value of $\tau = 0.67$ is obtained for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O. Thus, a distorted trigonal bipyramid (or a squarebased pyramidal distorted trigonal bipyramid, SBPDTBP)

(c) $4 \cdot 0.7$ MeOH

Fig. 1. Molecular configuration and atom-labeling scheme for (a) $Ga(N-p-NSO_2C_6H_4'Butpp)(OH) \cdot 0.5MeOH \cdot 0.5H_2O$ [$2 \cdot 0.5MeOH \cdot 0.5H_2O$], (b) $Tl(N-p-NSO_2C_6H_4'Bu-tpp)(O_2CCF_3)$ **3** and (c) $Zn(N-p-NSO_2C_6H_4'Bu-tpp) \cdot 0.7MeOH$ [$4 \cdot 0.7MeOH$], with ellipsoids drawn at 30% probability. Hydrogen atoms for all compounds are omitted for clarity.

with N(2), N(4), and O(1) lying in the equatorial plane for $2 \cdot 0.5 MeOH \cdot 0.5 H_2 O$ [12].

The pyrrole nitrogens N(5), N(4), and N(1) are no longer bonded to gallium, thallium, and zinc as indicated by their longer internuclear distances, 2.638(2) Å for Ga(1)…N(5), 2.880(2) Å for Tl(1)…N(4) and 2.627(6) Å for Zn…N(1). We adopt the plane of three strongly bound pyrrole nitrogen atoms [i.e., N(1), N(2), and N(3) for **2**, **3** and N(2), N(3), and N(4) for **4**] as a reference plane 3N. Because of the larger size of the Tl³⁺ in complex **3**, T³⁺ and N(5) are located on the same side at 1.14 and 1.41 Å from its (3N) plane, but for complex **2**, Ga³⁺ and N(4) are located on different sides at -0.17 and 1.27 Å from its (3N) plane, [cf. the corresponding displacement of 0.51 Å for Zn and 1.30 Å for N(5) in **4**]. Apparently, chelating bidentate trifluoroacetate in **3** is *cis* to the NSO₂C₆H₄^{*t*}Bu group with O(3) and O(4) being located separately at 3.17 and 3.01 Å out of the 3N plane and monodentate hydroxide in **2** is *trans* to the NSO₂C₆H₄^{*t*}Bu group with O(1) located at -1.86 Å out of the 3N plane.

'H, ¹³ C NMR and X-ray data for complexes 2 , 3 and 4										
Compound	$r_{\rm ion}$ (Å)	X-ray		¹ H NMR (ppm)	¹ H NMR (ppm)		¹³ C NMR (ppm)			
		$\Delta(3N)^{a}$ (Å)	θ^{b} (°)	^t BuBS-H _{3,5}	^t BuBS-H _{2,6}	^t Bu	ΔC_{β}^{c}			
Ga ³⁺ in 2	0.69	0.17	26.7	6.58	4.72	1.03	10-15			
Zn ²⁺ in 4	0.74	0.51	39.6	6.89	5.58	1.15	15-17			
T1 ³⁺ in 3	1.025	1.14	41.9	7.13	6.13	1.19	17-21			

Table 3 ¹H.¹³C NMR and X-ray data for complexes **2**. **3** and **4**

^a $\Delta(3N)$ denotes the displacement of the metal center from the 3N plane.

^b θ : dihedral angle between the pyrrole ring bearing a NSO₂C₆H₄[']Bu group and the 3N plane.

^c $\Delta C_{\beta} = \delta C_{\beta}$ (bearing a NSO₂C₆H₄^{*t*}Bu group) $- \delta C_{\beta}$ (without bearing a NSO₂C₆H₄^{*t*}Bu group).

The porphyrin macrocycle is indeed distorted because of the presence of the NSO₂C₆H₄^{*t*}Bu group. Thus, the N(5) (in 2), N(4) (in 3) and N(1) (in 4) pyrrole rings bearing the NSO₂C₆H₄^tBu group would be deviated mostly from the 3N plane and oriented separately in a dihedral angle of 26.7°, 41.9°, and of 39.6°, whereas small angles of 6.9°, 5.0°, and 8.6° occur with N(1), N(2), and N(3) pyrroles for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O, and 11.6° , 7.9°, and 2.1° occur with N(1), N(2), and N(3) pyrroles for 3, and 9.2° , 11.0° and 5.0° occur with N(2), N(3), and N(4) pyrroles for $4 \cdot 0.7$ MeOH. In complex $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O, such a large deviation from planarity for the N(5) pyrrole is also reflected by observing a 10-15 ppm upfield shift of the $C_{\beta}(C14,C15)$ at 120.1 ppm compared to 135.2 ppm for $C_{\beta}(C10,C19)$, 133.2 ppm for $C_{\beta}(C4,C5)$ and 129.7 ppm for $C_{\beta}(C9,C20)$. In compound 3, a similar deviation is found for the N(4) pyrrole by observing a 17-21 ppm upfield shift of the $C_{\beta}(C14,C15)$ at 116.0 ppm compared to 136.8 for $C_{\beta}(C10,C19)$, 134.0 ppm for $C_{\beta}(C9,C20)$, and 132.6 ppm for $C_{\beta}(C4,C5)$. In compound 4, a similar deviation is also found for the N(1) pyrrole by observing a 15–17 ppm upfield shift of the $C_{\beta}(C2,C3)$ at 117.6 ppm compared to 134.6 for $C_{\beta}(C7,C18)$, 132.5 ppm for $C_{\beta}(C12,C13)$ and 132.4 ppm for $C_{\beta}(C8,C17)$. Similar kind of upfield shifts of C_{β} resonances due to the non-planarity of porphyrin were also observed with a magnitude of 15-17 ppm for Zn(N-NTs-tpp) and 16-21 ppm for Tl-(N-NTs-tpp)(OAc) [2,3]. In a nutshell, as the ionic radius increases from 0.69 Å for Ga^{3+} , 0.74 Å for Zn^{2+} , to $1.025\,\text{\AA}$ for $\text{Tl}^{3+},$ the bending of pyrrole ring bearing a $NSO_2C_6H_4^{t}Bu$ group increases from 2, 4 to 3. Hence, the dihedral angles (θ) between the sharply bent pyrrole ring and the 3N plane increases from 26.7° in the gallium complex, 39.6° in the zinc complex, to 41.9° in the thallium complex (Table 3). Such a large bending from planarity is also reflected by observing the amount of the upfield shift for the C_{β} of the sharply bent pyrrole ring (i.e., ΔC_{β}). This ΔC_{β} increases from 10–15 ppm for **2**, 15–17 ppm for **4**, to 17-21 ppm for 3 (Table 3). The dihedral angles between the mean plane of the skeleton (3N) and the planes of the phenyl groups are 71.5° [C(24)], 69.6° [C(30)], 55.7° [C(36)], and 56.3° [C(42)] for $2 \cdot 0.5 MeOH \cdot 0.5 H_2O$ and 56.5° [C(24)], 83.5° [C(30)], 46.6° [C(36)], and 34.9° [C(42)] for 3 and the corresponding angles are 52.5°, 55.1°, 87.5°, and 47.2° for **4** · 0.7MeOH.

3.2. ¹H and ¹³C NMR for (2) and (4) in CDCl₃ and (3) in CD_2Cl_2

Complexes 2, 3 and 4 were characterized by 1 H (Fig. 2) and ¹³C NMR spectra. In solution, the molecule has effective $C_{\rm S}$ symmetry with a mirror plane running through the N(2)-Ga(1)-N(4)-N(5) unit for 2 or the N(2)-Tl(1)-N(5)-N(4) unit for 3 or N(3)–Zn–N(5)–N(1) unit for 4. There are four distinct β -pyrrole protons H_{β}, four β -pyrrole carbons C_{β} , four α -pyrrole carbons C_{α} , two different *meso* carbons C_{meso} , and two phenyl- C_1 carbons for all the three complexes. The NMR study of 3 showed four different types of Tl-H coupling constants for H_B in CD₂Cl₂ at 20 °C (Fig. 2b). The doublet at 8.81 ppm is assigned to $H_{\beta}(4,5)$ with ${}^{4}J(\text{Tl}-\text{H}) = 90$ Hz and the singlet at 7.03 ppm is due to $H_{\beta}(14,15)$. The doublet of a doublet at 9.16 ppm is due to $H_{\beta}(10,19)$ with ${}^{4}J(Tl-H) = 17.5 \text{ Hz} \text{ and } {}^{3}J(H-$ H) = 4.8 Hz and the doublet of a doublet at 9.03 ppm is due to $H_{B}(9,20)$ with ${}^{4}J(Tl-H) = 10.3$ Hz and ${}^{3}J(H-$ H) = 4.8 Hz. Likewise, there were also four different types of Tl-¹³C coupling constants for C_{β} in 3. The doublet at 132.6 ppm is due to $C_{\beta}(C4,C5)$ with ${}^{3}J(Tl-{}^{13}C) = 198$ Hz and the doublet at 136.8 ppm is due to $C_{\beta}(C10,C19)$ with ${}^{3}J(\text{Tl}-{}^{13}\text{C}) = 35 \text{ Hz}$. The singlet at 134.0 ppm is due to $C_{\beta}(C9,C20)$ with ${}^{3}J(Tl-{}^{13}C)$ being unobserved and the doublet at 116.0 ppm is due to $C_{\beta}(C14,C15)$ with ${}^{4}J(Tl-{}^{13}C) = 88$ Hz. The ${}^{1}H$ NMR spectra reveal that the aromatic protons of the 'BuBS group appear as two doublets at 6.58 (^tBuBS – $H_{3,5}$) and at 4.72 ppm (^tBuBS – H_{2.6}) for 2 (Fig. 2a) and at 7.13 (d) and 6.13 (d) ppm for 3 (Fig. 2b).

Due to the porphyrin ring current effect, all NSO₂ $C_6H_4'Bu$ and hydroxo protons are shifted upfield compared to their counterparts in free NSO₂ $C_6H_4'Bu$ and OH⁻. The above ring current effect indicates that the NSO₂ $C_6H_4'Bu$ group is bonded to Zn in 4 and to Tl in 3 and both the NSO₂ $C_6H_4'Bu$ and the OH⁻ ligands are bonded to Ga in 2 in solution phase. The NSO₂- $C_6H_4'Bu$ bonding argument is further corroborated by the result that the 'BuBS-C₁ [i.e., C(45)] in 3 was observed at 137.7 ppm with ${}^3J(\text{TI-C}) = 52$ Hz. X-ray diffraction analysis unambiguously confirms that 3 is a bidentate complex in the solid phase. Broadly, by increasing $\Delta(3N)$ from 0.17 Å for (Ga³⁺ in 2), 0.51 Å for (Zn²⁺ in 4) to 1.14 Å for (Tl³⁺ in 3), the $\delta('BuBS-H_2_6)$

Fig. 2. ¹H NMR spectra for (a) 2 in CDCl₃ at 599.95 MHz and (b) 3 in CD₂Cl₂ at 299.96 MHz.

shifts from 4.72, 5.58 to 6.13 ppm and $\delta({}^{t}BuBS-H_{3,5})$ shifts from 6.58, 6.89 to 7.13 ppm (Table 3). The ring current effect for the ${}^{1}H$ resonances of the ${}^{t}BuBS$ protons decreases with an increase in the distance between ${}^{t}BuBS$ protons and C_t. The geometrical center (C_t) is the center of the mean plane of the 4N atoms core [i.e., N(1), N(2), N(3) and N(5) for **2**, N(1)–N(4) for **3** and **4**]. The above results suggest that as the protons of the ^{*t*}BuBS are located on metal with a large $\Delta 3N$, they move away from the geometrical center C_t of 4N for the complexes **2**, **3** and **4**. Hence, the shielding of the ring current effect from the 18π electrons becomes smaller and the ¹H chemical shifts are relatively less upfield than those with a smaller $\Delta 3N$.

For ortho protons, at 20 °C, the rotation of phenvl group along C_1 - C_{meso} bond for 2 in CDCl₃ is intermediately slow which is evident from the appearance of the two sets of doublet, one multiplet and one singlet due to four different ortho protons of aromatic ring (Fig. 2a) [13]. For these ortho protons in 2, we attribute one multiplet at 8.34 ppm to ortho protons o-H(26,28), the doublet at 8.29 ppm to ortho protons o-H(22,32) with ${}^{3}J(H-H) =$ 5.4 Hz, one singlet at 8.36 ppm due to ortho protons o'-H(38,40) and the other doublet at 8.06 ppm is assigned to ortho protons o'-H(34,44) with ${}^{3}J(H-H) = 4.3 \text{ Hz}$ (Fig. 2a). This rotation of the phenyl group along C_1 - C_{meso} [C(7)–C(27) or C(2)–C(21)] bond for **3** in CD₂Cl₂ at 20 °C is also intermediately slow. This intermediately slow rotation is supported by the two doublets at 8.38 and 8.15 ppm due to o-H(26,32) and o-H(22,28), respectively. Moreover, the rotation of phenyl group along the C(12)-C(33) [or C(17)-C(39)] bond for 3 is at the intermediate exchange region. In this intermediate exchange region, the signals are broadened beyond detection. Hence, no signals of o'-H(34,44) and o'-H(38,40) for **3** have been observed at 20 °C (Fig. 2b).

3.3. Dynamic NMR of 3 in CD_2Cl_2

Upon cooling of a 0.02M CD₂Cl₂ solution of **3**, the ¹⁹F signals of CF₃CO₂⁻ being a single peak at 20 °C ($\delta = -73.50$ ppm), first broadened (coalescence temperature $T_c = -50$ °C) and then split into two peaks ($\delta = -72.92$ ppm) with a separation of 29.4 Hz at -90 °C. As the exchange of CF₃CO₂⁻ within **3** is reversible, the results at 564.49 MHz confirm the separation as a coupling of ⁴J(Tl-F) rather than a chemical shift difference.

The loss of coupling is due to reversible dissociation of $CF_3CO_2^-$ with a small dissociation constant [14]. Such a scenario would lead to the change in the chemical shift with temperature and no detectable free $CF_3CO_2^-$ and $Tl-(N-p-NSO_2C_6H_4'Bu-tpp)^+$ at low temperature, but would lead to the loss of coupling between trifluoroacetate and thallium at higher temperature. The chemical shift in the high-temperature limit is the average of the two species [i.e., $Tl(N-p-NSO_2C_6H_4'Bu-tpp)(O_2CCF_3)$ and $CF_3CO_2^-$] in Eq. (1) weighted by their concentration. The free energy of activation $\Delta G_{223}^{\ddagger} = 46.3 \text{ kJ/mol}$ is therefore determined for the intermolecular exchange of $CF_3CO_2^-$ in **3**.

At 20 °C, intermolecular exchange of the CF₃CO₂⁻ group is rapid as indicated by the appearance of quartet signal due to carbonyl carbon [δ 160.7, ²*J*(F–C) = 39 Hz] for **3** in CD₂Cl₂, but no Tl–¹³C splitting was observed.

Moreover, no signal of CF₃ carbons has been found for 3 in CD₂Cl₂ at 20 °C. At -90 °C, the rate of intermolecular exchange of $CF_3CO_2^-$ for 3 in CD_2Cl_2 is slow. Hence, at this temperature, the CO and CF₃ carbons of CF₃CO₂⁻ in 3 are observed at δ 160.2 ppm [with ²J(F-C) = 40 and ${}^{2}J(\text{Tl-C}) = 81 \text{ Hz}$ and 115.9 ppm $[{}^{1}J(\text{F-C}) = 290 \text{ and}$ ${}^{3}J(\text{Tl-C}) = 155 \text{ Hz}$, respectively. These ${}^{13}C$ resonances are quite close to that of trifluroacetato-N-tosylimidomeso-tetraphenylporphyrinatothallium(III) Tl(N-NTs-tpp)- (O_2CCF_3) 5 in which the two corresponding carbons were observed at δ 160.1 ppm [with ²J(F-C) = 38.6 and ²J(Tl-C) = 83 Hz] and 115.7 ppm $[{}^{1}J(F-C) = 287.2$ and ${}^{3}J(T-C) = 287.2$ C) = 154 Hz] respectively in CD₂Cl₂ at $-90 \degree$ C [15]. These ¹³C resonances are also quite close to that of $Tl(tpp)(O_2CCF_3)$ in which the two corresponding carbons were observed at 156.5 ppm [with ${}^{2}J(TI-C) = 128$ Hz, and $^{2}J(F-C) = 37 \text{ Hz}$ and 115.9 ppm [with $^{3}J(TI-C) = 239 \text{ Hz}$ and ${}^{1}J(F-C) = 291$ Hz] in THF-d₈ at -100 °C but with different ^{2,3}J(Tl–C) coupling constants [9]. An electronegative substituent, N(5), with a group electronegativity $\gamma = 2.98$ bonded to Tl(1) in 3 and the torsion angle of $\Psi_{N-C_{\gamma}}(N-Tl_{\alpha}-O_{\beta}-C_{\gamma}) = -79.7^{\circ}$ cause a significant negative contribution up to 84 Hz for $\Delta^3 J(\text{Tl-C}, \text{ N}) = \int^3 J(\text{Tl-C}, \text{ N}) dt$ 3) $-{}^{3}J(\text{Tl-C}, \text{Tl}(\text{tpp})(O_{2}\text{CCF}_{3}))] = 155-239$ and 47 Hz for $\Delta^{2}J(\text{Tl-C}, N) = [{}^{2}J(\text{Tl-C}, 3) - {}^{2}J(\text{Tl-C}, \text{Tl}(\text{tpp}) (O_2CCF_3)$] = 81–128 of CF₃CO₂⁻ in 3 [16–21].

To conclude, we have investigated for the first time the three diamagnetic, mononuclear, and bridged metal complexes of 21-(4-tert-butyl-benzenesulfonamido)-5,10,15,20tetraphenyl-porphyrin having M–N– $(p-SO_2C_6H_4^{t}Bu)$ –N [or M–N–^tBuBS–N, M = Ga(III), Tl(III), Zn(II)] linkage, and their X-ray structures are analyzed. The unambiguous assignments of ¹H NMR data for **2** and **4** in CDCl₃ and **3** in CD₂Cl₂ are reported in this work. Dynamic ¹⁹F and ¹³C NMR spectra of the trifluoroacetato group in 3 reveal that this group undergoes an intermolecular exchange with a free energy of activation, $\Delta G_{223}^{\ddagger} = 46.3 \text{ kJ/mol}$. Thus, the tpp complexes were thoroughly studied and characterized both by dynamic NMR and X-ray crystallography. The correlation of $\Delta 3N$ of the metal ion either with its ionic radius or with the ¹H ring current effect from the protons of 'BuBS group for compounds 2, 3 and 4 is clearly explained. Mean while, the correlation of the ionic radius of metal ion either with the dihedral angle (θ) between the bent pyrrole ring and the 3N plane or with ΔC_{β} $[=\delta C_{\beta} \text{ (bearing a NSO}_2C_6H_4^{t}Bu \text{ group}) - \delta C_{\beta} \text{ (without }$ bearing a NSO₂C₆H₄^tBu group)] is also depicted unambiguously.

4. Supplementary material

Crystallographic data in GIF format for **2**, **3** and **4** have been deposited with Cambridge Data Centre as CCDC No. 280262 (for $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O), CCDC No. 280263 (for **3**) and CCDC No. 280264 (for $4 \cdot 0.7$ MeOH), respectively. The three solvent protons in $2 \cdot 0.5$ MeOH $\cdot 0.5$ H₂O are not added in the file of CIF. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK on request (fax: +44 1223 336033; e-mail deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgement

Financial support from the National Research Council of the R.O.C. under Grant NSC 93-2113-M-005-015 is gratefully acknowledged.

References

- [1] H.J. Callot, B. Chevrier, R. Weiss, J. Am. Chem. Soc. 100 (1978) 4733.
- [2] J.Y. Tung, J.I. Jang, C.C. Lin, J.H. Chen, L.P. Hwang, Inorg. Chem. 39 (2000) 1106.
- [3] Y.I. Li, C.S. Chang, J.Y. Tung, C.H. Tsai, J.H. Chen, F.L. Liao, S.L. Wang, Polyhedron 19 (2000) 413.
- [4] C.S. Chang, C.H. Chen, Y.I. Li, B.C. Liau, B.T. Ko, S. Elango, J.H. Chen, Inorg. Chem. 40 (2001) 2905.
- [5] C.H. Chen, Y.Y. Lee, B.C. Liau, S. Elango, J.H. Chen, H.Y. Hsieh, F.L. Liao, S.L. Wang, L.P. Hwang, J. Chem. Soc., Dalton Trans. (2002) 3001.
- [6] F.A. Yang, J.H. Chen, H.Y. Hsieh, S. Elango, L.P. Hwang, Inorg. Chem. 42 (2003) 4603.

- [7] J.P. Mahy, P. Battioni, G. Bedi, D. Mansuy, J. Fishcher, R. Weiss, I. Morgenstern-Badarau, Inorg. Chem. 27 (1988) 353.
- [8] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, 4th ed., Harper Collins College Publishers, New York, 1993, p. 114, 292.
- [9] L.F. Chou, J.H. Chen, J. Chem. Soc., Dalton Trans. (1996) 3787.
- [10] A.W. Addison, T.N. Rao, J. Reedijk, J.V. Rijn, G.C. Verchoor, J. Chem. Soc., Dalton Trans. (1984) 1349.
- [11] R.G. Garvey, R.O. Koob, M.L. Morris, Acta Crystallogr., Sect. C 43 (1987) 2056.
- [12] G. Murphy, P. Nogle, B. Murphy, B. Hathaway, J. Chem. Soc., Dalton Trans. (1997) 2645.
- [13] R.S. Drago, Physical Methods for Chemists, 2nd ed., Saunder College Publishing, New York, 1992, p. 291.
- [14] J.P. Jensen, E.L. Muetterties, in: L.M. Jackman, F.A. Cotton (Eds.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1975, p. 299.
- [15] S.W. Chiou, J.H. Chen, personal communication.
- [16] H. Liu, Q. Wang, L. Liu, J. Chem. Educ. 69 (1992) 783.
- [17] J.A. Schwarcz, N. Cyr, A.S. Perlin, Can. J. Chem. 53 (1975) 1872.
- [18] R.H. Contreras, J.E. Peralta, Prog. Nucl. Magn. Reson. 37 (2000) 321.
- [19] M. Morvai, T. Nagy, A. Kocsis, L.F. Szabo, B. Podanyi, Magn. Reson. Chem. 98 (2000) 343.
- [20] J.S. Fabian, J. Guilleme, E. Diez, J. Mol. Struct. (Theochem.) 426 (1998) 117.
- [21] F.A. Yang, K.Y. Cho, J.H. Chen, S.S. Wang, J.Y. Tung, H.Y. Hsieh, F.L. Liao, S.L. Wang, L.P. Hwang, S. Elango, personal communication.