

0040-4039(95)01293-1

D- and L- Purpurosamine C Type Glycosyl Donors Starting from D- Glucosamine**

Xifu Liang, Richard Krieger and Horst Prinzbach*

Chemisches Laboratorium der Universität Freiburg i. Br., Institut für Organische Chemie und Biochemie, Albertstrasse 21, D-79104 Freiburg, Germany

Summary: New D- purpurosamine C type glycosyl donors (1, 2) are prepared from D-glucosamine in 26% (25%) total yield after 11 (8) steps. Access to the L-2-*epi*-donor 3 is opened through selective enzyme catalysed acetylation, ring opening and epimerisation in 7% total yield after 20 steps.

For the total synthesis of binuclear aminoglycoside antibiotics, natural (D) as well as non-natural (L) purpurosamine type glycosyl donors are wanted¹. The synthetic procedures worked out for D-purpurosamines and purpurosaminides (starting from D-glucose, cellulose, neamine, D-glucosamine, D-amino acids, from L-alanine and L-malic acid) generally do not provide glycosyl donors which are appropriate for modified Koenigs-Knorr glycosylation^{1,2}. Our recently reported route starting from racemic acrolein dimer had opened the way to D- as well as L- donors²; a drawback, however, is the time consuming and costly resolution of the racemic starting material².

In this letter we present the results of a project which was directed at a more efficient access to the Dpurpurosamine C type glycosyl donors 1, 2 and to the 2-epi-L-donor 3 with D-glucosamine as common starting

material. The synthetic sequence followed to prepare D-donors is a variation of an earlier approach to D-6-Nmethyl-2,6-di(N-benzyloxycarbonyl)purpurosamine C [2,6-di(benzyloxycarbonylamino)-6-methylamino-2,3,4,6tetradeoxy- α/β -D-erythro-hexopyranose] reported by Ito³. Selective acetylation⁴ of 6-OH in the known triol 4⁵ by making use of CAL (Novozym 435) in vinyl acetate/pyridine (r.t., 5⁶, 93 %) was followed by mesylation, deoxygenation (NaI/DMF⁷ rflx., 6, 65 %), and catalytic hydrogenation to give methyl 6-O-acetyl-2-amino-2,3,4-trideoxy- α -D-erythro-hexopyranoside 7. Protection with DNP-F (8) or Z-Cl (9), hydrolysis of the acetate, mesylation (100%), and substitution by azide (NaN₃/DMF) led to the D-methyl glycosides 10 (99%) and 11 (92%), resp. After treatment of 10 and 8 with Ac₂O/H₂SO₄(cat.)⁸, the D-glycosyl donors 1 (98%, α : β ratio 6:1) and 2 (97%, α : β ratio 4:1) were isolated as yellowish solids in total yields of 26% (11 steps) and 25% (8 steps), respectively, based on D-glucosamine.

Scheme 1. i) Novozym 435, vinyl acetate/pyridine, 93%; ii) MesCl/Et₃N, 96%; iii) Nal/DMF rflx., 67%; iv/v) H₂/Pd-C/MeOH; DNP-F/NaHCO₃/acetone:H₂O 1:1 (8, 90%) or Z-Cl/NaHCO₃/acetone:H₂O 1:1 (9, 99%); vi) $Ac_2O/H_2SO_4(cat.)/CH_2Cl_2$, 97%; vii) $K_2CO_3/MeOH$, 100%; viii) MesCl/Et₃N, 100%; ix) NaN₃/DMF rflx., 99%; x) $Ac_2O/H_2SO_4(cat.)/CH_2Cl_2$, 98%.

The 2-epi-L-donor 3 was approached starting from 11 (Scheme 2). The latter's transformation into linear

Scheme 2. i) $HSCH_2CH_2SH$, $BF_3 \cdot OEt_2/CH_2Cl_2$, 85%; ii) $MesCl/pyridine/DMAP/CH_2Cl_2$, 100%; iii) $TMAA/AcOH/CH_3CN$ rflx., 78-82%; iv) $(CF_3CO_2)_2IPh$, $MeOH_{abs}$, 94%; v) $Na_2CO_3/MeOH$, 88%; vi) $ZnCl_2/CH_2Cl_2$, 87% α - and β -glycoside (α : β ratio: 2:1); vii/viii) H_2/Pd -C/MeOH, DNP-F/NaHCO_3/acetone: H_2O 1:1, 83%; ix/x) 2n HCl/AcOH/CH₃NO₂, Ac₂O/pyridine, 78%, α : β ratio 1:1).

thioacetal 12 with 1,2-ethanedithiol/BF₃OEt₂⁹ was, when taken to completion, severely hampered by side reactions. With the conversion limited to ca. 70%, yields up to 85% of dithiolane 12 were achieved. After mesylation of 12 to 13 (quantitative), the S_N2 substitution $13 \rightarrow 14$ was found to be problematic due to competing elimination. With tetramethylammonium acetate (TMAA) in CH₃CN in the presence of AcOH, elimination could be reduced to trace amounts; however, formation of still unknown side products could not be avoided (78 - 82% 14). After treatment of 14 with (CF₃CO₂)₂IPh¹⁰ in MeOH, the dimethylacetal 15 was recovered in nearly quantitative yield; hydrolysis (Na₂CO₃/MeOH, 88%) and direct cyclisation led to oily, colorless methyl L-2-*epi*-purpurosaminide 16 (87%, α : β ratio 2:1, 16 steps from D-glucosamine, 11% total yield). Catalytic hydrogenation followed by derivatisation of the resulting amino groups with DNP-F (83%), hydrolysis² of the methylglycoside, and acetylation of the pyranose led to a 1:1 mixture of anomers of the desired L-2-*epi*-glycosyl donor 3 (78%, 2 steps, 7% total yield after 20 steps starting from D-glucosamine), which could easily be separated by column chromatography (silica gel, acetone/CH₂Cl₂ 1:15, R_f (3 α) = 0.59, R_f (3 β) = 0.38), [α]_D²⁵: 3 α = - 99.0, c = 0.14, CH₂Cl₂; 3 β = - 89.5, c = 0.12, CH₂Cl₂).

The stereochemistry at C-5 was established beyond doubt by ¹H-NMR comparison of 16 α with 11 α^6 , by comparison of 17 with ent-17 ($[\alpha]_D^{25}$ 17 = + 14.9, ent-17 = - 13.0) synthesized from 16 and known 18² (Scheme 3), respectively, and of ent-3 (from 18², Scheme 3, $[\alpha]_D^{25}$: ent-3 α = + 102.5, c = 0.06, CH₂Cl₂; ent-3 β = + 89.1, c = 0.10, CH₂Cl₂) with 3.

Scheme 3. i,ix) Amberlite IRA-400 (OH⁻); ii,iv,vii) Z-Cl, NaHCO₃; iii,vi,x) H₂/Pd-C; v,viii) HSCH₂CH₂SH, BF₃·OEt₂; x/xi) H₂/Pd-C, DNP-F/NaHCO₃/acetone:H₂O 1:1; xii/xiii) 2n HCl/AcOH/CH₃NO₂, Ac₂O/pyridine (α:β ratio 1:1).

The route presented here to the D-glycosyl donors 1 and 2 is shorter and more efficient than our previous approach to enantiomerically pure D-1-O-acetyl-2,6-bis(N-2,4-dinitrophenyl)purpurosamine C donor² (ca. 7%, 12 steps; 3.5% based on racemic acrolein dimer). The route to the 2-*epi*-L-donor 3 (α : β ratio 1:1, 7% total yield after 20 steps starting from D-glucosamine) is lengthy and not completely optimized but should provide sufficient material

of the ultimate astromicin type aminoglycosides with non-naturally configurated glycon parts to allow biological testing.

Acknowledgement: These studies were supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and BASF AG. X. Liang thanks the National Education Committee of P.R. China for financial support. We thank NOVO NORDISK for the generous gift of CAL (NOVOZYM 435).

References and Notes

** This paper is dedicated to Professor Dr. Richard Neidlein on the occasion of his 65th birthday - as an expression of our personal esteem.

- C. Ludin, T. Weller, B. Seitz, W. Meier, S. Erbeck, C. Hoenke, R. Krieger, M. Keller, L. Knothe, K. Pelz, A. Wittmer, H. Prinzbach, *Liebigs Ann.* 1995, 291.
- C. Ludin, B. Schwesinger, R. Schwesinger, W. Meier, B. Seitz, T. Weller, C. Hoenke, S. Haitz, S. Erbeck, H. Prinzbach, J. Chem Soc., Perkin Trans. 1 1994, 2685, and cit. ref.; F. Yang, C. Hoenke, H. Prinzbach, Tetrahedron Lett. in press; K. Toshima, K. Tatsuta, Chem. Rev. 1993, 93, 1503; R. R. Schmidt, "Synthesis of Glycosides" in B. M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis, Vol. 6, Pergamon Press Oxford 1991, p. 33.
- 3) Y. Ohashi, S. Okuno, K. Takeda, Y. Ito, Carbohydr. Res. 1978, 67, 503.
- H. K. Singh, G. L. Cote, T. M. Hadfield, *Tetrahedron Lett.* 1994, 35, 1353; K. Adelhorst, F. Björkling, S. E. Godtfredsen, O. Kirk, *Synthesis* 1990, 112; S. Riva, J. Chopineau, A. P. G. Kieboom, A. M. Klibanov, *J. Am. Chem. Soc.* 1988, 110, 584; H. Waldmann, D. Sebastian, *Chem. Rev.* 1994, 94, 911.
- 5) E. Chargaff, M.Bovarnick, J. Biol. Chem. 1937, 118, 421; K. Heynes, H. Paulsen, Chem. Ber. 1955, 88, 188.
- 6) The new compounds are characterized by elemental analyses and spectral data (IR, ¹H-, ¹³C-NMR, MS); e.g. 1: ¹H-NMR, $\delta = 2.21$ (s, CH₃); 3.32 (dd, 6-H, J = 4.5, J = 12 Hz); 3.40 (dd, 6-H, J = 5.5, J = 12 Hz); 3.72 4.13 (m, 5-,2-H); 5.64 (d, 1-H β -1, J = 8.0 Hz); 6.29 (d, 1-H α -1, J = 3.0 Hz); 2: ¹H-NMR, $\delta = 2.11$ and 2.22 (s, CH₃ α -2, β -2); 3.74 3.90 (m, 2-H β -2); 3.91 4.23 (m, 2-,6-,6'-H α -2, 6-,6'-H β -2); 5.66 (d, 1-H β -2, J = 8.0 Hz); 6.27 (d, 1-H α -2, J = 3.0 Hz); 3 α : ¹H-NMR, $\delta = 2.22$ (s, CH₃); 3.45 3.69 (m, 6-,6'-H); 3.95 (m, 2-H); 4.34 (m, 5-H); 6.10 (br.s, 1-H), MS (high resolution): calc. for C₂₀H₂₀N₆O₁₁: 520.11902, found: 520.1186; **3** β : $\delta = 2.08$ (s, CH₃); 3.50 3.73 (m, 6-,6'-H, J = 13.5, 6.0, 4.0, 13.5, 7.0, 4.5 Hz); 4.01 4.20 (m, 2-,5-H); 5.93 (d, 1-H, J = 1.8 Hz), MS (high resolution): calc. for C₂₀H₂₀N₆O₁₁: 520.11902, found: 520.1186; **3** β : $\delta = 3.16$ and 3.29 (dd, 6-,6'-H, J = 12.5, 7.0, 12.5, 3.5 Hz); 3.41 (s, OCH₃); 3.70 3.91 (m, 2-, 5-H); 4.65 (d, 1-H, J = 3.0 Hz); **16** α : ¹H-NMR, $\delta = 3.16$ and 3.27 (dd, 6-,6'-H, J = 13.0, 7.0, 13.0, 3.5 Hz); 3.41 (s, OCH₃); 3.78 (m, 2-H), 3.94 (m, 5-H); 4.56 (s, 1-H); 17/*ent*-17: ¹H-NMR, $\delta = 2.60$ (br. s, OH); 3.73 (m, 2-H); 3.94 (m, 5-H); 4.67 (d, 1-H, J = 4.0 Hz).
- R. S. Tipson, Adv. Carbohydr. Chem. 1953, 8, 107; R. S. Tipson, L. H. Cretcher, J. Org. Chem. 1943, 8, 95;
 E. Bloch, Organic Reactions 1984, 30, 457, and cit. ref.
- H. Paulsen, M. Paal, M. Schultz, Tetrahedron Lett. 1983, 24, 1759; S. Knapp, P. J. Kukkola, J. Org. Chem. 1990, 55, 1632; F. Wang, N. Sakairi, H. Kuzuhara, J. Carbohydr. Chem. 1993, 12, 823.
- D. Seebach, Synthesis 1969, 17; R.A. Moss, C. B. Mallon, J. Org. Chem. 1975, 40, 1368; Y. Honda, M. Sakai, G. Tsuchihashi, Chem. Lett. 1985, 1153; Y. Honda, A. Ori, G. Tsuchihashi, Chem. Lett. 1987, 1259;
 K. Takao, Y. Nigawara, E. Nishino, I. Takagi, K. Maeda, K. Tadano, S. Ogawa, Tetrahedron 1994, 50, 5681.
- 10) G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 287.

(Received in Germany 30 June 1995; accepted 7 July 1995)