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Abs t rac t  This paper presents a new soliton approach to hyper-distributed hyper-parallel 
self-organizing dynamic scheduling for task allocations among rational autonomous agents in a 
multi-agent system (MAS). This approach can overcome many drawbacks of other mechanisms 
currently used for coalition formation and cooperation in MAS. The thorny problems, such 
as overabundant bid, social behaviors, colony intelligence, variable neighbors, and interdepen- 
dency, can easily be treated by using the proposed approach, whereas they are very difficult 
for other conventional approaches. The simulation on a distributed transport scheduling sys- 
tem shows the soliton approach featured by hyper-parallelism, effectiveness, openness, dynamic 
alignment and adaption. 
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hyper-parallel problem-solving, dynamic task allocation 

1 I n t r o d u c t i o n  

Basically, there are two categories in distributed artificial intelligence (DAI): distributed problem- 
solving (DPS) and multi-agent system (MAS), the former being concerned with how to increase 
the whole outcome of the system via the cooperation among individual agents, whereas the latter 
trying to increase its own personal utility of each individual through the cooperation. The following 
cooperation/coordination paradigms are usually used in most MAS so far[i-4]: 

�9 Hybrid cooperation with both distributed and concentrated manners, where each agent only plays a role 
designated or assigned by some agents of higher level, and thus the cooperation takes place without extra 
overhead for communication or inference; 

�9 Purely distributed cooperation, where agents form coalitions through repeated mutual negotiations 
according to their own benefits and scopes with respect to either the environment or other agents, and then 
acquire their fair share of interests with other agents within the same coalition in the light of a previously 
reached agreement. 

No matter which cooperation paradigm is used, it is necessary to determine the cooperative mem- 
bers in advance and to form the coalition among many agents before executing the given tasks. That  
is the case with the non-super-additive coalition algorithm oriented to DSP in [3] and the multiagent 
negotiation under time constraints in [4]. There are many shortcomings in the coalition methods 
currently used in MAS: 

�9 The proper coalition could never be formed until a large amount of calculation and communication is 
done in nearly exhaustive way, so that considerable overhead of time and resources is required. 

�9 Once a process of task allocation has ended, owing to incomplete matching between a coalition and the 
corresponding task, some capabilities that agents have or tasks require always remain to be further handled. 
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But there is no dynamic strategy being ready at all times to deal with the problem. 
�9 Once a coalition aimed at a given task forms, no matter how the environment changes, the correspondence 

between the coalition and the task is almost fixed, being lack of colony intelligence. 
�9 Tasks generally play a passive role in MAS, selected by autonomous agents rather than actively selecting 

agents. 
To counter the problems mentioned above, this paper  makes use of and extends the competitive 

wave principles proposed in [5-8], and then presents a new soliton approach to hyper-distributed 
hyper-parallel self-organizing dynamic cooperat ion/coordination among rational autonomous agents 
of MAS, which can overcome many difficulties encountered in other mechanisms for the coalition and 
the cooperation. The soliton approach can also be used to implement the algebraic modelling of [9] 
for MAS distributed problem-solving. By the approach, the coalition formation and the cooperation 
concurrently occur, so that  all the coalitions needn' t  be built in advance of executing tasks via cooper- 
ations. Moreover, through a special soliton - -  competit ive waves with controllable propagation speeds 
and adjustable amplitudes, a lot of thorny problems, such as remainder capabilities, overabundant 
bid, dynamic coalitions, social behaviors, colony intelligence, variable neighbors, and interdependency, 
could easily be treated. The simulation on a distributed t ransportat ion scheduling system shows the 
soliton approach characterized by hyper-parallelism, effectiveness, openness, dynamic alignment and 
adaption. 

2 Soliton Model l ing  for M A S  Task Al locat ion 

The solitary wave has both particle and wave properties, and is a universal phenomenon in nature 
and physics. Particularly, its energy is concentrated in a relatively small region, and its waveform 
and/or wave speed could recover, called as elastic dissemination, when the waves interact mutually. 
The competitive wave [5-s], as a special solitary wave, is a nonlinear wave which propagates concur- 
rently in nonlinear media in such a way that the propagation paths and the speeds all depend on 
the competition results between waves. Only the competition winner wave along a hyper-edge can 
continually propagate further, whereas the loser wave along a hyper-edge is deprived of propagating 
forwards unless the wave along the hyper-edge becomes a winner again in the competition turn that 
follows. There are no interference between waves confluent to the same wave node and no reflection 
from either wave node or hyper-edge. The waveform remains rectangular without any distortion due 
to dispersion or diffusion. The wave amplitude decreases in inverse proportion to the propagation 
distance. The wave speed can change with the received wave amplitude and introduced heuristic 
knowledge. By virtue of the characteristics of solitary competitive wave, a hyper-distributed hyper- 
parallel self-organizing dynamic modelling for MAS task allocation will be constructed as follows. 

Definition i. Given a task set 9(t) = {gklk = i,...,,~}, and an agent set A(t) = {a~li = 
1 , . . . ,  n} at time slot t, each task g E ~(t) with required capability vector eg(t) and payment rg(t), and 
each agent a E A(t )  with owned capability vector ~a(t),  there are binary relations: 7-t(t) C_ A(t)  • A( t ) ,  
7-t'(t) C_ G(t) • A( t ) ,  and ~( t )  C G(t) • G(t), which represent the accessible neighbor relations between 
agents, between agents and tasks, and between tasks, respectively. Their entries are defined by 

1, if a5 e , { 1, if gk e H'(t)  
Hij ( t )  = 0, if aj ~ Af~(t) ' Hk~(t) = O, if gk ~ H[(t) ' 

1, if gk ~ gk, 

~kk ' ( t )  = 0, otherwise ' 

where Aft(t) and Af'( t ) express the agent neighbors exerted by a~ 's social actions and the task neighbors 
participated in by ai, respectively, and gk ~4 gk, holds iff gk, is a precedent condition of gk. 

Hereupon, at  a given time slot t, there are the following sets of directed edges: 

E l ( t )  = {ai t(~'t gklai E A(t) ,gk E O(t),t  > t(a~)}, 
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t o to 
a2 a3 ~ a5 a6 a7 

9~ 

C4 a~" a6 t~. t~. 

Fig .1 .  S o l i t a r y  wave  m o d e l l i n g  

for M A S  t a s k  a l l oca t ion .  

E2(t) = {gk t(9~)) a~ig k C ~(t) ,ai  E A ( t ) , t  > t(gk)}, 

E3(t) = {ai t(~'t ajla~,aj C A ( t ) , t  >>_ t(ai)}, 

E4(t) = {gk t(g~) gk'Jg~,gk' E G(t) , t  >>_ t(g~)}. 

Then we dynamically establish a speciM implicit di- 
rected A N D / O R  graph G ( N ( t ) , E ( t ) )  along which 

. . . .  concurrent solitary waves will propagate,  where 
E( t )  = E~ (t) U E2 (t) U E3 (t) tO E4 (t), and A(t)  U G (t) C 
N( t ) ,  as shown in Fig.1. Each node u e N( t )  has its 
capability vector, ~ ( t )  or (e~(t) ,r~(t)) ,  as defined 

*(~t in Definition 1, while each directed edge u v in 

E has a generahzed distance d(u t(~'l v) which can be 
defined according to the problem under consideration, 
as described later in the section on simulation. At a 
given t ime slot t, there is such a set F( t )  of nodes, 
called the wavefront of G, that  F( t )  = {ulu e N(t) ,  

for Vv e N(t) ,  f lu ~ v e E~ U E~}, and there is, at  
most,  one occurrence of a node with the same name in 
F(t) .  Only the nodes in F(t)  are able to spread new 
edges further at the next t ime slot. When  there is 
wave arrival at node u ~ F( t ) ,  node u will, according 

to its own belief or criteria, autonomously select and combine edges from the set ~*( t )  of all the input 
edges to it so as to form a set ~ ( t )  of hyper-edges input to node u, to decide the opt imal  hyper-edge 
E*(t) within ~ ( t ) ,  and to yield a set Q~,(t) of its output  edges at the next t ime slot. 

In the process for a node u in F(t)  to form its output  edges Q~,($), the following rules R should 
be observed: 

�9 If u is an agent node hi, ~ ,  (t) r 0, and 7/~ (t) = 1 or Yt 0 (t) = 1, then there is a, *(~ gk E Q~, (t) or 

a~ ~(~ a s C Q~, (t), respectively, where t(a,) >_ t. 
t(a{ . 

�9 If u is a task node gk, ~k,k(t) = 1 or a gk E s and all the precedent tasks of gk have 

finished, i.e., for Vg e {gig ~ gk C fl;~(t)} there is eg(t) = 0 (hereafter referred to as g i ) ,  then there is 
t(gk) 

gk ~ gk' E Qak (t) or gk t ( ~  a E Qa~ (t), respectively, where t(gk) >_ t. 
to 

As shown in Fig.2, at t ime t~. the hyper-edge composed of a4 ~ g3, a5 ~ g3, and a6 - ~  g3 
forms as the winner scrambles for node g3 with other possible hyper-edges; at t ime t5 t node a5 selects 

t l  ~:1 ~:1 
~ 5 ( t ~ )  = {g3 : ~  a5, g~ ~ a5}, Q~5(t~) = {a5 - - ~  g3~}, where g~ means task g3 has already 
finished, i.e., eg3(t ) = 0; node gl cannot determine its hyper-edges and cannot refract wave along 

t 2 t~.> 
Qg~ (t) until the wave along g33- 3.) gl arrives at gl; at t ime t31., node a4 located in edge g3 a4 

becomes a wavefront node, so a4's  remainder capability can bid for task g2 via edge a4 g2, and 
tz ~t t~ ) .L 

for task g3 once again via a~ g~ ,  so that  Qo,(t~)  = {~4 ~> g~ ,  a ,  - ~  g~}. 
On the basis of dynamically generated G(N( t ) ,  E(t)) ,  below we will discuss the issues about  the 

amplitude, speed and t ime period for solitary waves to propagate along G(N( t ) ,  E( t ) ) .  Without  loss 
of generality, suppose the following. 

�9 The time spent by a node u E F(t) in combining hyper-edge set fl,,(t), determining optimal hyper-edge 
s and yielding its output edges Q~(t) can be neglected in comparison with the time for wave propagation 
along hyper-edges. 

| The below discussion on the solitary wave propagation only focuses on that along E~(t) tO E2(t) for the 
time being. 
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F i g . 2 .  S o l i t a r y  w a v e  p r o p a g a t i o n s  a l o n g  i m p l i c i t  A N D / O R  g r a p h .  

�9 T h e  d i v e r g e n c e  o f  t h e  i n t r i n s i c  t r a n s m i s s i o n  d e l a y  i n  w a v e  m e d i a  ( n o d e s ,  e d g e s ,  a n d  h y p e r - e d g e s )  c a n  b e  

n e g l e c t e d  a s  c o m p a r e d  w i t h  t h e  w a v e  p r o p a g a t i o n  t i m e .  

�9 W a v e s  c a n  p r o p a g a t e  a l o n g  h y p e r - p a t h  [ P ~ ( t )  t o  n o d e  u a t  t i m e  t ,  i f f  t h e  w a v e s  o f  a l l  t h e  h y p e r - e d g e s  i n  

P ~ ( t )  a r e  t h e  c o m p e t i t i o n  w i n n e r s  a t  t i m e  t .  

D e f i n i t i o n  2 .  P ~ ( t )  = J ~ ( t )  ,-~ s ~ u r e p r e s e n t s  s u c h  a h y p e r - p a t h  h a v i n g  e x i s t e d  be fore  t i m e  t 

f r o m  w a v e  s o u r c e s  ~ ( t )  a l o n g  h y p e r - e d g e  s ~ f ~ ( t )  u p  to  w a v e  n o d e  tt t h a t  i n  f ~ , ( t )  t h e r e  i s  o n e  a n d  

o n l y  o n e  h y p e r - e d g e  s  w h i c h  b e l o n g s  to P ~ ( t ) ,  w h e r e  u '  is  a n y  n o n s o u r c e  n o d e  w i t h i n  P ~ ( t ) ,  h e r e a f t e r  

r e f e r r e d  to as  s i m p l y  P ~ ( t )  = J ~ ( t )  ~ u .  H y p e r - p a t h  P ( t )  = J ~ ( t )  ~ v ~ u r e p r e s e n t s  t he  c a s c a d e  o f  

h y p e r - p a t h  79~(t) = ~ ( t )  ~ v a n d  edge  v t(~t u ~ Q ~ ( t ) .  

D e f i n i t i o n  3 .  T h e  a m p l i t u d e  a t t e n u a t i o n  5 ( ~ ( t )  ~ s ~ u , t )  f o r  w a v e s  to  p a s s  h y p e r - p a t h  

79~(t)  = J ~ ( t )  ~ s ~ u a n d  to  a r r i v e  a t  u a t  t i m e  t i s  d e f i n e d  by  

~ ( & ( t )  ~ L ~ ~,  t) = ~ [ ~ ( & ( t )  ~ c '  ~ v ,  t) § ~ d ( v ,  ~)] 

vt(~uEs /2~ E ' p ~  ( t )  

(1) 

where d(v,  u) is the generalized distance of edge v ~ u; and ~ is a posit ive coefficient. And  for  wave 
source u, there is 6(,7~(t) ~ s ~ u, t) = 0 at any t ime t. 

The waves arrive along hyper-path P~(t )  at node u with the amplitude 

{ ~ -  5(J~( t )  ,~ s ~ u, t ) ,  
~ ( & ( t )  ~ C ~ u , t )  = o, 

i f  A > 0  

(21 
o t h e r w i s e  

w h e r e  

,~ -- ~ [~(&(t) N ~' ~ v, t) - 9d(~, ~)] - (p - ~)~, (3) 

with 0 being a threshold value close to O, p being the number of edges in s and ~ being constant wave 
amplitude gushed from a wave source. 
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D e f i n i t i o n  4. When the waves arrive along 73~(t~) = J , ( t~ )  ~ s  ~ v at node v jus t  at t ime t , ,  

and the edge v ~ u is chosen as an output  of node v, supposing tv ~ t (v) ,  the refraction wave could 

propagate along v ~ u towards u at the speed 

> t~) = { Sod(v ,u ) /O( t ) ,  if O(t) > 0 
S~o(,o)(V u , t  

- . 0 ,  i f  O(t) <_ 0 ( 4 )  

O(t >_ t~) = r id(v ,u)  + h~(u) - Sotv + 5(T)*(t) , t)  (5) 

where So is a positive constant; h~(u) is a heuristic generalized distance est imated for  hereafter 
propagation from v via u to wave sinks lq. I f  u E lq, then h~(u) = O; and 5(Ta*(t),t) is the 
smallest attenuation among the waves that arrive at v along some hyper-paths until  t ime t, namely 
5(P* (t), t) = minp~ (t~) {5(Pv ( t . ) ,  t , ) I t .  _~ t} = m i n  (t).k~(-!~,es [5(P;  (t), t) + rid(k, v)]. 

D e f i n i t i o n  5. The t ime period T(7~,( t ))  for waves to pass through 7)~,(t) = J~( t )  ~ s ~ u up to 
node u is equal to 

t~ = T(TPu(t)) = ~ [T(7~( t ) )  -k T(v  '(~t u)] = T(TP~(t~,)) (6) 

v~(-~uEt:,7%(t)E'P~(t) 

where T ( v  ~ u) is the period for waves f rom P~(t) to arrive at u via v t (~  u. 

3 Concurrent Algorithm and Properties 

H y p e r - D i s t r l b u t e d  H y p e r - P a r a l l e l  A l g o r i t h m  M T L  

Step 1. Provide MTL with agent set A(t0) = {a~li = 1 , . . . , n }  as wave sources, and task set ~(t0) = 
{g~]k = 1, . . .  ,m}, each a~ with capability vector 9~(t0) and each gk with capability ek(t0) and payment 
r~(t0). 

Cobegin 1. 
Costep 2. Parallelly update wavefront F(t)  at time t, and at the begining let F(t0) = Jr(to) U ~(t0); 

For Vai, gk E F(t) ,  once waves along a hyper-edge arrive at them, 

Costep 3. Parallelly construct a, ~ aj E Qa, (t) and gk -~ gk' E Qgk (t) according to 7/ij (t) and :Dkk, (t)~ 
respectively; 

t ! I Costep 4. a~ with remainder capability parallelly builds wave edge a~ -4 gk E Q~ (t) according to 7-/~(t) 
to make a new bid for gk; 

Costep 5. For every u E F(t),  by using rules R,  parallelly form hyper-edge set ~ ( t ) ,  select the optimal 
hyper-edge s  from flu(t), and, if u E U(t), then build Q~(t) corresponding to Z~(t), 

Costep 6. Once Q~ (t) is established parallelly, parallelly refract input waves of/:~, (t) into edges of Q~(t) 
immediately, at the speed decided by (4) and (5) and with the wave amplitude attenuation by 
(1)-(3); source node u always gushes out constant amplitude wave from u along each edge of 
Q~(to) in El(t); 

Costep 7. Parallelly calculate capability decrements, A ~ ( t )  practically consumed by a ~-~) gk within 

/2;~ (t), and Ae~ (t) practically contributed by g~ t(g~) a~ within Qa~ (t), where t > t(a,), t > t(gk), 
a~ E F(t).  Parallelly modify capability vectors, ~ ( t )  and eL(t), and if for Vk, ek(t) = 0 or for Vi, 
~i( t )  -=- 0, then 'MTL successfully finishes; otherwise go to Costep 2. 

Coend 1. 

In wha t  follows, (1) - (6)  are always observed.  T h e  val idat ion and some proper t ies  for M T L  to find 
out op t imal  solution are given by the following theorems.  

L e m m a  1. f f  5(73~ (t), t) doesn't change with t > t~, then the period for wave to pass through 

7~,(t~) and edge v u up to u is equal to the period for  wave to pass through the opt imal  hyper-path 

7)*(t) and v t(vt u to u, where t~ is the t ime for waves along 7),(t~) to arrive at node v. 
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Proof. Because 5(79*(t),t) still remains constant after tv, by (4) and (5), O(t >_ t~) remains 

t(- t unchanged and the wave from 79.(t.) will refract at a constant speed along v u, where by 

T(v t(~t u) = d(v,u) /$p.( t . ) (9 ~ u, t  >_ tv) 

= [~(79~(t), t _> tv) + ~d(v, u) + h.(u)]/So - t~, 

and 

T(79.(t.) ~ u) = t .  + T(v t("t u) = [5(79"(t), t >_ t .)  +/3d(v,u) + h.(u)]/So (7) 

Let 79v(t~) be the optimal hyper-path to v until t . ,  along which waves arrive at node v just at time 
& A ZX & t . ,  that is t~  _< tv, 79.(t~) = 79.*(t~), and 5(79.(t. ) , t .  ) <_ 5(:P.(t.), t .).  Obviously, for t .  _< t < t . ,  

there is 5(P.(tvzx),t.zs) <_ 5(79.(t), t), which means that  5(79.* (t), t _> t ~) also does not change after t~ ,  
and thus r (79 . ( t . )  ~ u) = T ( P . ( @  ) ~ u) = T ( P g ( t )  ~ u) holds for t > t~.  [] 

L e m m a  2. I f  S(79g(t),t) does not change with t > t*, for Yv, v ~ u E s e a~(t) ,  t* being the 
earliest time for waves to reach v along some hyper-path, then the period for waves to propagate along 
79~(t) = J~(t) ,.0 12 ~ n up to u is equal to that for waves to propagate along the optimal hyper-path 
up to 12 and then to pass via 12 up to u. 

Proof. By (6) and (7), there is 

t~ =T(P~(t))  = T(79~,(t~)) = E [5(79~(t),t >_ t*) +/3d(v,u) + h~(u)]/So 
t(v vt(-~uEE 

= ~ [5(79v(t;),t*) +/3d(v,u) + hv(u)]/8o (8) 

vt(-~uEs 
[] 

L e m m a  3. Under the same condition as Lemma 2, and if t~, >_ t~, then the optimal hyper-path 

79~(t) never contains edge v ~ u, where t; is the earliest time for waves to arrive at v. 
Proof. By t ;  = min~o(to)[T(79.(t.))] and by (8), t~, is equal to the time for wave to propagate 

along the optimal hyper-path 79~(t) to v. Thus from t;  _> t~,, it can be derived that  

t ;  = T(792(t)) = T(79~(t;)) = ~ [5(79.,(t;,),t;,) + ~d(v' ,u) + h.,(u)]/So 

.,t(_~)uE12 

: ~ [t*, + T(v'  t("'t u)] <_ t; < t* + T ( v  t(vt u), 
, t 0 / )  

v ~ u E s  

and then v' 7! v, v ~ u •/2, v t("t u r 79"(t). [] 
Lemm~ 4. For Vv, if 5(79~ (t), t) never changes when t >_ t ; ,  then the wave with the maximum 

amplitude will a~ ive  earliest at t ;  = [5(79:,(t~), t*) + h(u)] /So,  where v t("t u ~ Z;, Z; E fl~,(t). 
Proof. By assumption 5(79,~(t), t >_ t*) = 5(79,(t*), t*) = c(v), c(v) being a constant, and by (8), 

there are 

t~ = T(79~,(t~)) = E [5(79*(t),t >_ t*) +'fld(v,u)]/So + h(u)/So 
.t(~uEE 

= ~ [c(v) + ~d(v,~)l /So + h(~)/So, 
vt(~uE12 

and 

5(79*(t),t >_ t*)  = m i n  {5(79~(t~),t~ >_ t * ) }  = rain 
7%(tu) EEf2~(t) 

Z [5(79*(t),t >_ t*) +fld(v,u)]. 
vt(.~uE s 
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By L e m m a  3, only the  case t* < t* needs considering, and  therefore 

5(P~(t) , t  >_ t~) = rain E [5(P~(t),t > t* 4- rid(v,u)] 

vt(-~uCs 

min  ~-~ [c(v) 4- rid(v,u)] s  Lca . ( t )  ~ = rain [ S 0 t ~ -  h(u)] = S o t * -  h(u) 

holds true,  namely,  when  t > t*, 5(P~(t) , t )  is also unchanged.  Hence, t* = [5(iD*(t), t ~ t*) 4- 
h(u)]/So = [5(P*(t*), t*) 4- h(u)]/So, and at  t* the m i n i m u m  a t t enua t ion  wave, i.e., the  m a x i m u m  
ampl i tude  wave, arrives at  u earliest.  [] 

L e m m a  5. When t > t*(v), it is true that 5(P*(t),  t) doesn't change with time for any wave node 
V. 

Proof. First ,  define the m a x i m u m  in te rmedia te  node n u m b e r  ~(u) of node  u in a h y p e r - p a t h  P~,(t) 
as follows. If  u is a wave source, ~(u) ---- 0 and if m a x  ~(_~es = k, then  ~(u) = k 4- 1. 

By induct ion for ~(u),  if ~(u) = 0, it is obvious t ha t  5(P*(t),  t) = 0 for t > to and  the  l e m m a  holds 
true. When  ~(u) = 1, any ances tor  node v o f u  is a wave source, thus,  5(P*(t),  t) = minz:ea~(t) E ~(~ez:  

[5(P*(t),t) 4- rid(v,u)] = minL~a~(t) E rid(v,u) is unchanged with  t ime  and the  l e m m a  is t rue  

for ~(u) = 1. By  the induct ion  a s sumpt ion  for ~(u) = k, one needs to prove t ha t  the  l e m m a  is also 
t rue  for ~(u) = k 4- 1. For ~(u) = k 4- 1 ~ 2, the set w(u) of the' fa ther  nodes of u can be divided into 
such two subsets,  wl(u)  and w2(u), t ha t  if v E w(u) and G* < t* then  v e wl(u) ,  otherwise  v E w2(u). 
By the induct ion a s sumpt ion  abou t  ~(u) < k and  by L e m m a  3, it is sure t h a t  5(P*(t),  t > t*) = c(v) 
is a constant ,  and  there  is 

5 ( P * ( t ) , t > t * ) =  rain ~-~ [5(P*(t) , t>__t,)+rid(v,u)] 

vtt_~Y.~uE s 

= min  E [c(v) 4. rid(v, u)l. 
s vt(-'~uEs u) 

Therefore  5(79"(t), t > t*) remains  unchanged with  t ime, and the  conclusion holds for ~(u) = k + 1. [] 
T h e o r e m  1. The wave along the hyper-path ~*(t)  with the minimum attenuation will arrive at 

node u earliest, and the arrival time is t* = [5(P*(t) ,  t > t*) + h(u)]/So. 
Proof. I t  is s t ra igh t forward  f rom Lemmas  3, 4 and 5. [] 
T h e o r e m  2. Waves that pass along 7 ) . ( t )  and P*(t)  to v at time t ,  and t*, respectively, t ,  - t* < 

[rid(v, u) + h~(u) - h(v)]/So, will arrive at the next node u at the same time. 
Proof. By L e m m a  4 and  T h e o r e m  1, we have t* = [5(P*(t), t >_ t*) + h(v)]/So. Thus ,  rid(v,u) + 

h , (u)  - Sotv + 5(P*(t) ,  t > t*) > 0, namely  O(t > t , )  > 0 can be derived. Fur the rmore ,  by  Definit ion 
9 and L e m m a  1, T ( P , ( t )  N u) = [5(:P*(t), t > t , )  + rid(v, u) + h~(u)]/So = T(P*( t )  N u) holds true.  
If  t ,  - t* > [rid(v,u) + h , (u)  - h(v)]/So, then  O(t ~ t , )  < 0, and S~.(tu)(v ~ u , t  > t , )  = 0, which 

means the wave from ~.(t) fails to propagate along.v t(vl u.. [] 

T h e o r e m  3. I f  M T L  selects a heuristic value h~(u) so that [h~(u) - h(v)]/d(v,  u) is a constant, 
then the wave propagates at an identical speed along any edge. 

Proof. By T h e o r e m  1, Sot* = 5(P*(t),  t >_ t*) + h , (u)  holds, and  

Sp.(t.) (v u, t > t*) = Sod(v,  u)/[rid(v,  u) 4. hv(u) - Sot* + 5(Ta:(t), t > t*)] 
= Sod(v, u) / [ r id (v ,  u) + by (u )  - h(v)]  = So/(ri + c) 

is a positive constant. [] 
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T h e o r e m  4. The period time for Algorithm MTL to find out the optimal solution is independent 
of the heuristic value. 

Proof. By Theorem 1 and h(u) ==- 0 for any wgve sink node u, there is the time t ;  = [5(J)*(t), 
t >_ t;) + h(u)]/So -- 5(79"(t), t >_ t;)/$o. Here 5(79~*(t), t _> t{~) has nothing to do with the heuristic 
value h(v) of any wave node v. [] 

T h e o r e m  5. The larger the heuristic values, the less the complexity of wave nodes required for 
finding out the optimal solution. 

Pro@ Let the set of nodes via which waves have passed by time t be Af(t), and hi(u) <_ h2(u) 
for wave node u. By Theorem 1, t ; (1)  = [5(:P*(t), t >_ t ; (1))  + hl(u)]/No and t*(2) = [5(79~(t), 
t >_ t ; (2))  + h2(u)]/So hold true. Because 5(79~(t),t >_ t*(1)) = 5(P~(t),t >_ t ; (2) )  is irrelative to 
h(u), there is t ; ( 1 ) -  h~ (u) = t ; ( 2 ) -  h2(u) and thus t*~(2) _> t*(1), which implies the waves with h2(u) 
cannot propagate so fast as the waves with ht (u) can. Moreover, according to Theorem 4, irrespective 
of ht(u) or h2(u), the Algorithm MTL spends the same time in finding the opt imal  hyper-path,  
whereby N'2 (t) C_ All (t). [] 

T h e o r e m  6. Algorithm MTL has the time complexity O(L) to find the existential solution, where 
L is the total distance of the optimal hyper-path. 

Proof. By Theorem 1, the wave reaches a wave sink node u at time t~ which is dlrectly proportional  
to L. [] 

4 S i m u l a t i o n  and C o n c l u s i o n s  

By using the solitary wave modelling and the algorithm MTL, the simulation experiments on a 
distributed t ransportat ion scheduling system are carried out, where every distr ibuted t ransportat ion 
company and every distributed warehouse, as a hauler (agent) and a cargo owner (task) respectively, 
manage to pursue their own maximum profits or minimum costs via negotiation and then via coor- 
dination under various constraints, such as volume of road haulage, freight charges, hauling capacity, 
the number of trucks, service quality, price of goods, haul cycle, freight distance, order of t ransport  
priority, and so forth. All the constraints in addition to some interferential social behaviors among 
individual haulers are taken into account in the simulation. Particularly, the generalized distance 
d(v, u) used in algorithm MTL is synthetically defined as follows: 

d(ai,gk) =wl[lg~i(t)ll/ ~ tlqoij(t)tl + w2llqoi(t)ll/ll~ik(t)ll 
j = l  

+ wallek(t)ll/ll~(t)tl + w41l~k(t)fl/r~k(t); 

d(gk, ad =wl Ilek(t)ll/~ fl~'~k(t)ll + w'211ek(t)ll/ll~o~k(t)ll 
i = i  

l 1 + w3p(dik, vik, Ii~ik(t)ll) + wj(q i ) ,  

where [[-t[ is the norm value of capability vector; 
, / are weight coefficients; p is W 1 , . . . ~ W 4 and w 1, . . . ,  w 4 

a function to calculate the time period for ai to finish 
subtask gik corresponding to II~ik II, dlk and vik being 
the freight distance and freight velocity, respectively; 
and f is a function of service quality qi of company 

ai.  

It is owing to both controllable speed and ampli- 
tude of wave propagation that  the complex transport  
scheduling problem is effectively solved in a hyper- 
distributed hyper-parallel self-organizing way. Fig.3 
illustrates some simulation results. Here for simplic- 
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Fig.3.  S i m u l a t i o n  r e su l t s  on  d i s t r i b u t e d  s e l f - o r g a n i z i n g  

d y n a m i c  s c h e d u l i n g  for t r a n s p o r t  p r o b l e m .  
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ity, in the s imulat ion,  the capaci ty to ta l ly  required for an  agent to bid for several tasks once mus t  be 
less than the capacity the agent owns currently, that is the overabundant bid, which can also be dealt 

with by MTL algorithm in principle, is unallowable. 

The conclusions are summarized as follows: 
The solitary competitive wave approach and the algorithm MTL can implement hyper-distributed hyper- 

parallel self-organizing dynamic scheduling for MAS task allocation. 
�9 The proposed approach is featured with many advantages over other conventional problem-solving meth- 

ods for MAS. Specially, it is as easy as natural to deal with the interdependency, remainder capability, dynamic 
coalition, social behaviors, colony intelligence, etc. 

�9 The solitary wave model is essentially different from general implicit AND/OR graph used to search state 

space. In the classical search of implicit AND/OR graph, there are two phases: top-down search and bottom- 

up search, and in bottom-up phase all the hyper-edges are previously fixed. Moreover, the back-tracking 

is usually necessary. On the other hand, however, in the soliton model, the hyper-edges are dynamically 

constructed, and the back-tracking and two phases are not necessary, so that it is possible to handle the 

stochastic distributed social intervenient behaviors of MAS. 
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