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A model for the growth of an ideal and a non-ideal spherical gas bubble in a qui- 
escent viscous liquid is presented. The growth of the bubble is assumed to be con- 
trolled by both mass transfer and viscous forces. Using the integral method, the dif- 
ferential momentum and binary mass balances were transformed into ordinary 
differential equations, which were numerically solved. Some analytical solutions for 
simple cases are also presented. The relevance of this work to the process of poly- 
mer melt devolatilization is discussed. 

INTRODUCTION 

he problem of bubble growth can be found in T many areas of chemical engineering science. For 
example, one of the elementary steps in polymer pro- 
cessing is that of polymer melt devolatilization. In this 
industrial process, low concentrations of volatile com- 
ponents (unreacted monomers, solvents, water) are 
removed from the polymer melt. This boiling process 
conducted at high temperatures and under vacuum, 
results in the nucleation and the growth of bubbles 
(1.2). 

A large number of mathematical models for bubble 
growth were presented in the literature. Some models 
have been written for bubble growth assumed to be 
governed by mass transfer alone, while others as- 
sumed momentum transfer alone. Using an integral 
method, the combination of these phenomena was 
presented by Rosner and Epstein (3), Pate1 (4) and 
others. Heat transfer at the low concentrations at 
which devolatilization is conducted is probably not a 
controlling factor (5, 6). 

Most of the models have been focused on the liquid 
outside the growing bubble. Very little is known, for 
example, about the pressure within the bubble. This 
is due to the fact that most of the investigators pre- 
sent their results in terms of the bubble radius as a 
function of time. It will be shown that for the case in 
which both mass transfer and viscous forces control 
the bubble growth, the pressure inside the bubble 
can increase to extremely high values before it de- 
creases to a value close to the ambient pressure. If, for 
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example, the value of this maximum pressure is above 
the saturation pressure of the vapor inside the bub- 
ble, then a wrong physical situation is obtained. 

In a previous work (4). the growth of a spherical 
bubble in a quiescent liquid has been theoretically 
studied. In his work it was assumed that both mass 
transfer and viscous forces (creeping flow) controlled 
the process. The concentration boundary layer thick- 
ness was assumed to be very small compared to the 
radius of the bubble, the gas within the bubble was 
assumed to obey the ideal gas law and Henry's law 
was applied. The present paper extends Patel's nu- 
merical work by presenting some approximated ana- 
lytical solutions to his work. Furthermore, and in 
order to avoid the wrong physical situation discussed 
above, the present work connects between the ther- 
modynamic properties of the solvent-polymer solution 
and an equation of state for the gas inside the bubble 
capable to predict phase change. 

THE BASIC GOVERNING EQUATIONS 

A review of fundamentals of bubble growth, where 
all the basic equations are presented and developed, 
is given by Favelukis and Albalak (7). We shall present 
here only the main results. The equation of continuity 
in the liquid phase in spherical coordinates, assuming 
constant density and spherical symmetry, may be in- 
tegrated to give the radial velocity of the liquid: 

u, = (;)2$ 

where R(t) is the radius of the bubble and t is time. 
Note that Eq 1 is valid when the density of the liquid 
is much greater than that of the bubble and when 
both phases are incompressible. 
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The Navier-Stokes equation in the radial direction 
assuming creeping flow and spherical symmetry may 
be combined with the radial velocity of the liquid and 
a force balance at the surface of the bubble to give: 

where PB(t) is the pressure in the bubble, P, is the 
ambient pressure (a constant in this work), u is the 
surface tension and p. is the liquid viscosity. The ini- 
tial condition for the last equation is: 

R = &  at t = O  (3) 

According to Eq 2, and for bubble growth (dR/dt > 
01, the initial radius of the bubble must be greater 
than a critical value of: 

2a %=-- 
pB - e m  

(4) 

A differential mass balance in a binary system as- 
suming spherical symmetry, constant density and dif- 
fusion coefficient (D) is of the form: 

(5) 

where c is the molar concentration of the volatile sol- 
vent in the liquid. The boundary and initial conditions 
for Eq 5, in this work, are: 

c = cs(t) at r =  R(t) (6) 

c=c, at r = m  (7) 

c = c, at t =-- 0 (8) 
If only the volatile solvent is present within the bub- 

ble, which is in chemical equilibrium with the liquid 
at the bubble surface, then we may apply Henry’s law: 

where K is Henry’s constant (molar base). In order to 
solve the problem another boundary condition is re- 
quired. A mass balance for the solvent in the bubble 
gives: 

(10) 

where n is the number of moles of the volatile solvent 
in the bubble. Equation 10 requires the following ini- 
tial condition: 

As mentioned by Patel (4), constant gas density is 
assumed in the derivation of Eqs 1 and 2 but it will be 
left as a variable in Eq 10. For the case of variable gas 
density. also Eq 10 need to be modified, but this 
would not cause a significant change in the results. 

Finally, the ideal gas equation of state is: 

PBV= %T (12) 
here V is the volume of the bubble, Rg is the universal 
gas constant and T is the absolute temperature. Con- 
stant temperature will be assumed in this work. 

CONSTANT PRESSURE AND TEWEWTURE 
INSIDE THE BUBBLE 

Before we start to solve the complete problem, it is 
interesting to see first the simple case in which the 
pressure and the temperature within the bubble are 
constant. Although this is not true, this assumption 
leads to analytical solutions, which may be later com- 
pared to the numerical results. For this case the mo- 
mentum and the binary mass balances can be solved 
independently. 

Assuming that viscous forces alone control the bub- 
ble growth, Eq 2 may be integrated using the initial 
condition given in Eq 3 to give (7, 8): 

However, if the growth is controlled by mass trans- 
fer alone, then the solution of Eqs I and 5 together 
with the boundary conditions described by Eqs 6-8 
and 10 is given by Birkhoff et al. (9). and Scriven (10): 

where A is the dimensionless growth constant. For an 
ideal gas inside the bubble, the following asymptotic 
cases may be obtained. For small values of A (slow 
growth rates): 

R( t )=  mt 2 

and for large values of A (fast growth rates): 

Note that when viscous forces alone control the 
growth of the bubble, the radius changes as an expo- 
nential function of time. However, if mass transfer 
controls the growth, then the radius of the bubble 
changes as the square root of the time. 

THE INTEGIUU METHOD 

The integral method, that was used by Rosner and 
Epstein (3), Patel (4) and others, will be applied also in 
the present work. First, Eq 5 is multiplied by ? fol- 
lowed by an integration with respect to r from r = R(4 
to r = R(t) + S ( 4 ,  where 6 is the concentration bound- 
ary layer thickness. The result, together with Eq 10, 
is then integrated with respect to time. Two important 
assumptions are made: (a) A parabolic profile, given 
in Rosner and Epstein (3). is assumed for the solvent 
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concentration: and (b) That the concentration bound- 
ary layer thickness is much smaller than the radius of 
the bubble (6/R << 1). After a long algebraic proce- 
dure, the final result is: 

dn 32n2 D(c, - c ~ ) ~ R ~  
dt 3 n - no 
_ -  - 

which is valid, only if the following ratio: 

6 3 n - n ,  _ -  _ -  
R 4~ (c, - cS)R3 

is much smaller than 1. Note that the results here dif- 
fer somewhat from the earlier works since we refer 
here to molar concentrations rather than mass con- 
centrations. 

It is interesting to check the approximated expres- 
sion, given by Eq 17, with the exact solution for the 
case of constant pressure inside the bubble. Equation 
17 can be integrated under the assumption of an ideal 
gas inside the bubble and that n, = 0 (R, = 0) at t = 0 
to give: 

This result (thin concentration boundary layer 
thickness) should be compared to the case of fast 
growth rates given by Eq 16. Note that the two equa- 
tions are similar in form. Also the numerical constant 
2 is very close to the numerical value of 1.95 of Eq 16. 

DXHENSIONLESS EQUATIONS 

We define the following dimensionless variables: 

and the following dimensionless numbers: 

&m 
&ro* = - Ro 

A = -  E% 
% 

(28) 

Note that Pm can be obtained by substituting R,, n,, 
and the temperature of the system into the ideal gas 
equation. A characteristic “viscous” time was chosen 
instead of the usual ”diffusion” time. This is because 
by looking at the published results so far, it appears 
that for short times the radius of the bubble changes 
as something similar to an exponential function of 
time, whether for long times the bubble radius looks 
to be proportional to the square root of time. We shall 
see later that the pressure inside the bubble increases 
to extremely high values only at the beginning of the 
process. Therefore, a characteristic “viscous” time 
seems to be the reasonable choice. 
The two governing equations, Eqs 2 and 17, are given 
in a dimensionless form by: 

(29) 

As suggested by Pate1 (4), a dimensionless variable z 
= (n* - 1)2 was introduced in order to avoid the sin- 
gularity of Eq 17 at t = 0 where n = n,,. The last two 
eqs need to be solved simultaneously with the follow- 
ing initial conditions: 

R * =  1 at t * = O  (3 1) 

z = O  at t * = O  (32) 
The dimensionless pressure, according to the ideal 
gas equation is: 

p; = ___ 1 + vz 
R *3 

(33) 

Finally, the following condition must be met: 

< < 1  (34) 
6 3  
R  IT A(l  - B e ) R * 3  
- 

Note that this complicated problem has been trans- 
formed into two, first order, ordmary, non-linear, dif- 
ferential equations. Five dimensionless numbers gov- 
e m  the physical situation. 

IDEAL GAS 

In order to simpllfy the problem we start with the 
simplest case in which P,* = %* = B = 0, which 
probably represents a case of maximum growth rate. 

FA% >> 1 

In Fig. 1 we examine the influence of varying the 
value of A for a constant value of F = 1. Figure la 
shows that, as expected from Eq 30, bubble growth 
increases as A increases. Note also that for this case 
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FILJ. 1 .  The effect of the parameter A on bubble growth, for  the case of F = 1 and P,* = Rd* = B = 0. [cd the radius of the bubble: (b) 
the number of moles in the bubble; [c) the pressure in the bubble: [d, the ratio 6 / R .  

the radius of the bubble changes as something similar 
to a n  exponential function of time. We could not 
check cases for which the value of A is smaller than 1 ,  
since already at A = 1 the ratio S / R  is above 0.6 and 
according to our assumptions ,!?q 34 is not valid any 
more [see Q. Id). Note also that if B = c,(O)/c, = 0, 
then the ratio c,(t)/c, will be equal to zero at all times. 

The most interesting observation is, of course, the 
behavior of the pressure, as it can be seen in Fig. Ic. 
The pressure increases to a maximum (at a relative 
short time) before it decreases to a value close to the 
ambient pressure (at long times). As the value of A in- 
creases, this maximum pressure increases and de- 
pending upon the physical situation it can reach ex- 
tremely large values. Therefore the two most common 
assumptions found in the literature, ideal gas or con- 
stant pressure within the bubble, may not be valid. 

The reason for the increase in the pressure, at rela- 
tive short times, is very simple. .At t = 0, and accord- 
ing to the boundary and initial conditions defined in 
this problem, the thickness of the concentration 
boundary layer is zero and therefore there is an infinity 

flux to the bubble. Since the bubble does not expand 
“relatively” fast, then the pressure within the bubble 
must increase. Fortunately, all this happens at t = 0. 

Two observations can be made from the numeri- 
cal results. At the maximum pressure n* >> 1 
(& > > 1 )  and that the maximum occurs always at 
an asymptotic value of R* = 1.24. With those observa- 
tions we shall now try to obtain an analytical expres- 
sion for the maximum pressure for the simple case 
where P,* = = B = 0. First Eq 30 can be divided 
by Eq 29 to give an expression for d z / M  which, com- 
bined with Eq 33, may be later integrated to give the 
following algebraic expression valid at all times: 

~ * 7 -  1 
z( :fi + 1) = FA2 (?) (35) 

Then, Eq 33 may be differentiated with respect to P 
and evaluated under the condition that dP,*/dP = 0. 
The result may be combined with Eqs 29 and 30 to 
give a second algebraic equation valid only when the 
pressure is at its maximum: 
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Solving Eqs 35 and 36 simultaneously, we get com- 
plicated expressions which may be simplified when 
 FA^>> 1: 

237/21T2/3 
pB,max* = 3617 (FA') ' I 3  = 2.84(FA2) ' I 3  (38) 

Using a similar procedure it can be shown that at this 
Same value for R*, 6/R obtains its maximum, which is 
equal to: 

Therefore, for the present case, in order to assure a 
thin concentration boundary layer thickness at all 
limes, the condition (F/A)ll3 << 1 must be met. 
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Next, we examine the case of varying the value of F 
for a constant value of A = 1. Again, we choose the 
simple case of P,* = = B = 0.  m e  2a shows 
that, as expected from Eq 30, bubble growth de- 
creases as F decreases. Figure 2c shows that, again, 
there is a maximum pressure. As F decreases PBW* 
decreases to an asymptotic value of 1. The radius in 
which this maximum is obtained is very close to 1 
and also decreases as F decreases. Figure 2d shows 
that for values greater than F = 1 the condition S/R 
<< 1 would not be met. 

&*2l 

According to the momentum equation, for the bub- 
ble to grow, the radius of the bubble at t = 0 must be 
greater than the initial critical radius (w < 1). How- 
ever, no such condition is required for the mass equa- 
tion where the initial radius can be zero. The question 
to be asked is what is the new condition when we 
solve both equations simultaneously. Figure 3a shows 
some numerical results for the case of A = 1, F = 

P,* = B = 0, and 2 1.  
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Flg. 2. The effect of the parameter F on bubble growth, for the case of A = 1 and P,* = %* = B = 0. (3 the radius of the bubble: (b) 
the number of moles in the bubble: (c] the pressure in the bubble; (a the ratio 6/R.  
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B = 0. 

For the cases where Rca* > 1,  the radius of the 
bubble decreases to some minimum value before it in- 
creases. Thus we have an interesting situation where 
there is mass transfer to the bubble, but the radius of 
the bubble decreases. Again, we shall try an analytical 
expression for this unusual situation. At the mini- 
mum radius, M / d P  = 0, Eq 29 (when P,* = 0) to- 
gether with Eq 33 results in: 

For the cases where FA2 << 1, the numerical re- 
sults show that at the minimum radius & < < 1, 
leading to the following expression for the minimum 
radius: 

(4 1) 
1 Rm = -- a; 

However, when FA2 > > 1, the numerical results in- 
dicate that very large values Rd* are needed in order 
to obtain a significant reduction in the value of the 
minimum radius (see Fig. 3b). When > 1, accord- 
ing to the momentum equation, there are conditions 
for bubble collapse and the radius of the bubble de- 
creases with time. But because there are also condi- 
tions for mass transfer to the bubble, eventually the 
bubble will grow. Clearly that for large values of FA2 
(large diffusion coefficients) the minimum radius will 
be larger, and the recovering time (the time in which 
the bubble will obtain again its initial value) will be 
smaller. 

NON-IDEAL GAS 

It was shown that when FA2 >> 1 the pressure in- 
side the bubble can increase to e-xtremely high values 
before it decreases to a value close to the ambient 
pressure. Therefore, the common assumption of an 
ideal gas inside the bubble may not be valid at all 

times. Furthermore, we can imagine that there can be 
a certain pressure in which beyond it dissolution or 
even condensation may occur. This last point will be 
explained in the next two figures. 

Figure 4 shows a typical behavior of a solvent-poly- 
mer solution. The x-axis represents the volume fi-action 
of the solvent (+) while the y-axis is the pressure of the 
bubble (PJ since we assume that the bubble contains 
only the volatile solvent and that the vapor pressure of 
the polymer is zero. As usual, Henry's law may be as- 
sumed for the low solvent concentration regime. 

Suppose we have a system originally at some sol- 
vent volume fraction at the bubble's surface of +,(O) 
represented by the point A, while the point B repre- 
sents the (constant) solvent volume fraction at infinity 
(+J. At the beginning of the process, the pressure in- 
side the bubble increases, point A moves towards 
point B, the concentration difference decreases and 
the concentration boundary layer thickness increases. 
If the maximum pressure is below PB,B then there is 
no problem at all. However, if the maximum pressure 
is above PB.B. then at some time PBA(t) > PB,B or +,(t) 
> +% and mass transfer from the bubble to the liquid 
will happen. Also, when A approaches B the concen- 
tration boundary layer thickness becomes very large 
and the solution is not valid any more. Therefore, our 
model cannot predict the physical situation close and 
beyond point B. 

Now, suppose that +m is at point B where Henry's 
law is not applicable anymore. But our ideal gas 
model does not know that since Henry's law is as- 
sumed only for +, (at the moving point A). Now the 
pressure in the bubble increases and assume a situ- 
ation where point A reaches point C' in which the 
pressure in the bubble is equal to the equilibrium 
pressure of the solvent (PB,w). Thus we have a wrong 
physical situation where condensation takes place be- 
fore dissolution. The pressure in the bubble should 
follow the AB' path (and perhaps AB'Q but certainly 
not the A C  path. 
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m. 4. The vapor pressure of a soknt-polymer system, 0s afwrction of the volumefraction of the solvent in the liquid 

In order to avoid a wrong physical situation, we 
need to connect the solvent pressure and the solvent 
volume fraction with an equation of state for the gas 
phase capable of predicting phase change. The sim- 
plest choice is. of course, the van der Waals equation 
of state given by: 

where a and b are parameters of the van der Waals 
equation that can be calculated from the critical prop- 
erties as follows: 

(43) 

here T, and Pc are the critical temperature and critical 
pressure respectively. 

Figure 5 shows a typical van der Waals fluid at 
some constant temperature below the critical temper- 
ature. As before, point A represents the concentration 
at the surface which moves (at the beginning) towards 
the fixed point B, which represents the constant con- 
centration at infinity. In general, the solvent may even 
be at a pressure above the equilibrium pressure (in 
the line CD) without undergoing condensation. How- 
ever, this is an unstable situation and we shall as- 
sume that it does not happen here. 

The equilibrium pressure PB,- (at points C or E) is 
the one where the integral (along Ec) vanishes. An ap- 
proximated expression for the equilibrium vapor pres- 
sure of a van der Waals fluid is given by Wall (1 1): 

(45) 

Using Flory-Hugins theory, the volatile pressure can 
be connected to the equilibrium pressure and the vol- 
ume fraction at the surface of the bubble by (1) and 
(2): 

PE = PE,~&S -[(I - 4 s )  + ~ ( 1  - +d2] (46) 

where x is the interaction parameter. Note that x 5 
0.5, otherwise a wrong physical situation is obtained 

For typical devolatilization system the solvent con- 
centration is very small (C$s << 1) and we obtain 
Henry’s law: 

(pB > pB,&)* 

pJ3 = pB,sa&s eq(l + x) (47) 

Finally, the solvent volume fraction may be related to 
the solvent molar concentration by the following ap- 
proximated expression: 

Mc C$=- 
P 

where M is the molecular mass of the solvent and p is 
the density of the pure solvent. 
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Fg. 5. A v a n  der Waalsfluid at some constant temperature below the critical temperature. 

the ideal gas Eq 33 is replaced by the van der Waals 
eq., which its dimensionless form is: 

l + &  
PB* = 

Y [ R * ~  - p ( l  + A)] 
where the following dimensionless parameters are de- 
fined as: 

and y is given by: 

(53) 

Note that a 2 0 and 0 5 p 5 1, so  that y 2 0. For the 
simple case of an ideal gas inside the bubble a = p = 
0 leading to y = 1. 

The two differential governing equations are now 
Eqs 29 and 49 together with Eqs 5&53, and the corn- 
bination of Eqs 45 and 46 given by: 

The dimensionless numbers remain the same except 
that B (Q. 27) does not exist any more. Instead, we 
have four new dimensionless numbers: a, p,+, and x. 

Finally, the condition given in Eq 34 has to be modi- 
fied to: 

Note that we have now a total of eight dimensionless 
numbers that govern the physical situation. 

Consider a devolatilization system initially contain- 
ing 30% volume fraction of solvent at 200°C and 1 
mmHg. Some typical values for an organic solvent are: 
T, = 600 K, P, = 4 . lo6 Pa leading to a = 2.62 . lo6 
Pa . m6/kgmo12, b = 0.156 m3/kgmol and PB,sm = 
1.49 . lo6 Pa. Assuming that: p = 100 Pa . s, D = 
lo4 m2/s, u = 10” N/m, x = 0.5, M = 50 kg/kgmol 
and p = 800 kg/m3. If we chose = 0.5 pm and R, 
= 5 Fm then Pm = 4.13 . lo3 Pa and n, = 5.51 . 
kgmol. The eight dimensionless numbers are: P,* = 

0.0323, R,* = 0.1, A = 1090, F = 40, CL = 7.02 . 
lo4, p = 1.64. 1w. 4, = 0.3 and x = 0.5. 
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Fig. 6. The growth of an ideal gas bubble (with Henry’s luw) compared to the growth of non-ideal gas bubble (with the complete 
Fiory-Hugins theory) for a typical devolatilization system. (4 the radius of the bubble: (b) the pressure in the bubble: (c) the ratio 6 /R;  
(4 the ratio C$S/C$a. The dashed line is the iciealgas and the solid line is the non-idealgas. 

Figure 6 compares the growth an ideal gas using 
Henry’s law (Eq 47) with a non-ideal gas bubble using 
the complete Flory-Huggins theory (Eq 46) for the cho- 
sen system. Figure 6a shows that the radius of the 
bubble using Henry’s Law is always greater. From 
Figs. 4 and 6d it can be seen that for the same PB, +s 
is greater and (I$m - I$J is smaller leading to a lower 
growth rate (lower driving force) using the new formu- 
lation. m e  6b shows that it is possible to obtain a 
wrong physical situation (PB > PsaJ when using 
Henry’s law. Finally, the validity of the solution is 
checked in Fig. 6c. 

SO= LIMITATIONS OF THE MODELS 

The models presented here assumed that the sol- 
vent concentration at infinity (%) is constant. In a real 
process the amount of solvent is limited, and there- 
fore as time passes the concentration at infinity must 
decrease. According to our models, the pressure in 
the bubble reaches high values at relative short times. 
Since this situation appears at the beginning of the 
process, when the solvent concentration at infinity 

cannot change so much, the assumption of constant 
infinity concentration can still describe this phenome- 
non. At long times, we cannot just@ any more this 
assumption, and a more realistic picture can be ob- 
tained using the cell model (12). In that model, not 
only the concentration at infinity can be treated as a 
variable, but it also can deal with a large number of 
bubbles in a limited amount of polymer. 

For reasons of simplicity we have assumed constant 
physical properties although it is well known that they 
are a strong function of the solvent concentration. At 
the beginning of the process, the pressure in the bub- 
ble increases, and so does the solvent concentration 
at the surface of the bubble (3. As a result, not only 
the viscosity decreases but also the surface tension 
decreases (1 3), resulting from J3q 2 in a pressure de- 
crease. On the other hand, as the pressure and the 
surface concentration increase, the diffusion coeffi- 
cient will increase dramat idy  (14), and this time, ac- 
cording to Eqs 10 and 12 the pressure will increase. 
We observe that some parameters tend to decrease the 
pressure, while others tend to increase the pressure. 
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Since the governing equations are valid for constant 
physical properties, the value of the maximum pres- 
sure described in this work should be taken only as a 
first approximation. 

CONCLUSIONS 
A model for momentum and mass controlled spheri- 

cal bubble growth in a quiescent viscous liquid is pre- 
sented. Applying the integral method and assuming a 
thin concentration boundary layer thickness, the the- 
oretical model presented by Patel (4) was improved by 
developing some analytical results. The model was 
further improved in order to deal with the pressure 
within the bubble, which under certain conditions 
may reach very large values that. can lead to a wrong 
physical situation. This was done for a solvent-poly- 
mer mixture in a devolatilization process by connect- 
ing the van der Waals equation of state with Flory- 
Hugins theory. 
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NOMENCLATURE 
Parameter of the van der Waals equation. 
Dimensionless number. 
Parameter of the van der Waals equation. 
Dimensionless number. 
Molar concentration. 
Diffusion coefficient. 
Dimensionless number. 
Henry’s constant. 
Molecular mass of the solvent. 
Number of moles inside the bubble. 
Pressure. 
Radial coordinate. 
Radius of the bubble. 
Universal gas constant. 
Time. 
Absolute temperature. 
Velocity. 
Volume of the bubble. 
Dimensionless variable. 

Greek letters 
a = Dimensionless parameter. 
fi = Dimensionless parameter. 

Y =  
s =  
A =  
c L =  
P =  

4 ? =  
r J =  

x =  

Dimensionless parameter. 
Concentration boundary layer thickness. 
Dimensionless growth constant. 
Viscosity of the liquid. 
Density of the pure solvent. 
Surface tension. 
Volume fraction of the solvent. 
Interaction parameter. 

subscripts 

B =  
c =  
c r =  
r =  

sat = 
o =  

s =  

c c =  

In the bubble. 
critical. 
Critical. 
Radial direction. 
At the bubble’s surface. 
Saturation. 
a t t = 0  
Far away from the bubble. 

Superscripts 

* =  Dimensionless. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

10. 
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