

Fluorescent chemical sensor based on double N_2O_2 cavities for continuous recognition of Cu^{2+} and Al^{3+}

Ruo-Nan Bian, Ji-Fa Wang, Ya-Juan Li, Yang Zhang, Wen-Kui Dong

PII:	S1010-6030(20)30627-4
DOI:	https://doi.org/10.1016/j.jphotochem.2020.112829
Reference:	JPC 112829
To appear in:	Journal of Photochemistry & Photobiology, A: Chemistry
Received Date:	15 June 2020
Revised Date:	27 July 2020
Accepted Date:	3 August 2020

Please cite this article as: Bian R-Nan, Wang J-Fa, Li Y-Juan, Zhang Y, Dong W-Kui, Fluorescent chemical sensor based on double N_2O_2 cavities for continuous recognition of Cu²⁺ and Al³⁺, *Journal of Photochemistry and amp; Photobiology, A: Chemistry* (2020), doi: https://doi.org/10.1016/j.jphotochem.2020.112829

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier.

Fluorescent chemical sensor based on double N_2O_2 cavities for continuous recognition of Cu^{2+} and Al^{3+}

Ruo-Nan Bian, Ji-Fa Wang, Ya-Juan Li, Yang Zhang, Wen-Kui Dong* School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

*Corresponding author. E-mail addresses: dongwk@126.com (W.-K. Dong).

Graphical Abstract

A new bis(salamo)-based chemical sensor H_2L_s for continuous recognition of Cu²⁺, Al³⁺ was synthesized. The chemical sensor H_2L_s can detect Cu²⁺ by the phenomenon of fluorescence quenching, and a test strip loaded with the sensor is used to quickly and accurately identify Cu²⁺. Chemical sensor H_2L_s not only can detect Cu²⁺ in environmental water sample, but also continuously recognize Al³⁺, and realize the interference-free identification effect of other trivalent metal ions on Al³⁺. Continuously recognize Cu2+, Al3+:

Highlights

- A new bis(salamo)-based chemical sensor H₂L_s for continuous recognition of Cu²⁺, Al³⁺ was synthesized.
- The chemical sensor H_2L_s can detect Cu^{2+} by the phenomenon of fluorescence quenching, and a test strip loaded with the sensor is used to quickly and accurately identify Cu^{2+} .
- Chemical sensor H₂Ls not only can detect Cu^{2+} in environmental water sample, but also continuously recognize Al^{3+} , and realize the interference-free identification effect of other trivalent metal ions on Al^{3+} .

Abstract

A fluorescent chemical sensor based on a bis(salamo)-like tetraoxime H₂L_s was designed and synthesized. The chemical sensor uses double N₂O₂ cavities as sensing elements, which can be combined with specific metal ions to achieve ion recognition. The chemical sensor can detect Cu^{2+} by the phenomenon of fluorescence quenching, and a test strip loaded with the sensor is used to quickly and accurately identify Cu^{2+} . Besides, the chemical sensor also can continuously recognize Al³⁺ in the system and

realize the interference-free identification effect of other trivalent metal ions on Al³⁺. Through ¹H NMR, mass spectrometry, infrared spectroscopy, and other experiments, the identification mechanism of the fluorescent chemical sensor was verified. The numerical values of LOD and Ka were calculated by the corresponding titration data and Benesi-Hildebrand formula.

Keywords: bis(salamo)-like tetraoxime; fluorescent chemical sensor; Cu^{2+} ion; Al^{3+} ion; test paper strip

1. Introduction

At present, water scarcity and metal pollution are two of the major problems of our water resources [1-7]. Contamination of water resources by metals and other qharmful ions not only seriously affect the ecological environment but also directly pollute the soil, resulting in metal pollution of agricultural products, threatening human health [8-13]. Nowadays, many agricultural products have been found to contain metal elements, so the development of a fast, accurate, and efficient method to detect metal ions in complex water samples is the focus and hotspot of environmental science and biomedical research [14-18]. Fluorescence sensor molecules are widely used in ion detection because of their facile synthesis, high sensitivity and selectivity, fast response, and high interference resistance [19].

Salamo-like compounds have higher stability compared to salen-like compounds, and the symmetrical double salamo-like compound has excellent flexibility and several different cavities with high selectivity and metal ions [20-25]. Therefore, the balanced bis(salamo)-like compounds can interact with many metal ions to form metal complexes, which have considerable potential in ion recognition, supramolecular construction, and biological applications. Salamo-like compounds are derivatives of salen-like compounds by modifying the -C=N- group in salen compounds to the -C=N-O- group, which introduces an electronegative O-atom, making them 10^4 times more stable than salen compounds [26-29]. The design and

introduction of different functional groups to modify the end groups can indirectly regulate the solubility of these ligands in aqueous systems, thereby expanding the range of detection of these compounds as fluorescent chemical sensors for different ions in the environment [30-35]. Copper is one of the trace elements essential for life in plants and animals and plays a critical role in the life process. Many of the active sites of metallizes and metalloproteins contain dinuclear copper(II) structural units [36-40]. Besides, copper has a large number of coordination points and excellent coordination properties and can form copper(II) complexes with most ligands, making the study of copper(II) coordination more convenient. The application of copper(II) compounds in catalytic and optoelectronic materials is gradually becoming a research focus [41-43]. The stable order of complexes generated from Mn^{2+} to Zn^{2+} divalent metals with ligands containing N coordination atoms can be observed in the following order: Mn²⁺<Fe²⁺<Co²⁺<Ni²⁺<Cu²⁺>Zn²⁺, the sequence called the Irving-Williams sequence, which roughly corresponds to the variation of the weak-field CFSE [44-45]. Based on the Irving-Williams sequence, the copper complexes are more stable in comparison to those of other same period divalent metal ions.

H₂Ls was found to recognize copper(II) ions and to recognize aluminum(III) ions directionally after the formation of copper(II) complexes. Excess aluminum(III) ion in the human body is not suitable for skeletal development and can also affect intelligence, so the complex $[(Ls + 2Cu^{2+})NO_{3}]^{+}$ (Lc) has the necessary implications and developmental prospects for the detection of aluminum(III) ions in organisms.

The Cu²⁺ ions were first detected by using the bis(salamo)-like chemical sensor **H**. **2Ls**. The experimental results showed that sensor **H**2**Ls** can detect Cu²⁺ in aqueous solution by the fluorescence quenching phenomenon. The advantages of the sensor **H**. **2Ls** for detection of Cu²⁺ include a low detection limit, high coordination constant, wide pH range and fast response time. In addition, a test paper equipped with the sensor **H**2**Ls** was prepared, which can be used to detect the presence of Cu²⁺ easily, quickly, accurately and qualitatively in aqueous solution. Hence, sensor **H**2**Ls** has potential applications for Cu²⁺ detection in real life. Besides, the sensor **H**2**Ls** can continuously identify Al³⁺ in the system and achieves interference-free identification of Al^{3+} by other trivalent metal ions. Finally, test paper strip experiments were done, and the results showed that this fluorescent chemical sensor could be applied to the test paper to detect specific ions quickly.

2. Experimental section

2.1 Experimental methods and instruments

All chemicals and solvents were analytical grade reagents from Tianjin Chemical Reagent Factory and were used without further purification. Elemental analyses were obtained on a GmbH VarioEL V3.00 automated elemental analysis instrument. Melting points were obtained by a microscopic melting point apparatus made in Beijing Taike Instrument Limited Company and were uncorrected. ¹H NMR spectra were measured by German Bruker AVANCE DRX-400 spectrometer. Fluorescence spectra were recorded on the Hitachi F-7000 spectrometers. ESI-MS spectra were measured on the Bruker Daltonics Esquire 6000 mass spectrometer. All pH measurements were made with a pHS-45 digital pH meter.

2.2 Synthesis and characterization of H₂L₅

The bis(salamo)-like tetraoxime H_2L_8 was designed and synthesized based on previously reported research methods and test routes in this laboratory. [46,47]

Scheme 1. Synthetic route to sensor H₂Ls

2,2'-(Ethylenedioxy)bis(benzaldehyde)(1) was synthesized according to a literature procedure [48].

2-[O-(1-Ethyloxyamide)]oxime-6-methoxyphenol(2) was prepared according to a previously reported method [49-52]. Weighing 1,2-bis(aminooxy)ethane(d) 414.45 mg (4.5 mmol) in ethanol (20 mL), another 684.67 mg (4.5 mmol) of 3-methoxysalicylaldehyde(c) was dissolved in ethanol (20 mL). An ethanol solution of 3-methoxysalicylaldehyde(c) was added drop by drop to an ethanol solution of 1,2-bis(aminooxy)ethane(d) in a water bath at 55°C, with a controlled drop

acceleration of about 10 s a drop and continuous reaction for 6 h to obtain light yellow ethanol solution. Decompression distillation removes excess solvent and concentrates the reaction solution to about 5 mL. The concentrated solution is a bright yellow oily liquid, further purified by column chromatography to obtain white solid 748.44 mg, yield: 73.51%; m.p.: 95.5-96.5°C. Anal. Calcd. for C₁₀H₁₄N₂O₄: C, 53.09; H, 6.24; N, 12.38. Found: C, 53.32; H, 6.20; N, 12.16. ¹H NMR (500 MHz, CDCl₃) δ 3.92 (s, 3H), 3.96 (t, *J* = 4.5 Hz, 2H), 4.38 (t, *J* = 4.5 Hz, 2H), 5.50 (brs, 2H), 6.82 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.87 (t, *J* = 7.8 Hz, 1H), 6.90 (dd, *J* = 7.8, 1.6 Hz, 1H), 8.24 (s, 1H), 9.88 (s, 1H).

An ethanol solution (10 mL) of 2,2'-(ethylenedioxy)bis(benzaldehyde)(1) (270.22 mg, 1.0 mmol) was added drop by drop to an ethanol solution (20 mL) of 2-[*O*-(1-ethyloxyamide)]oxime-6-methoxyphenol(2) (453.08 mg, 2.0 mmol) in a water bath at 55°C, and the reaction continued for 4h. A large amount of white precipitation occurred in the solution. At the end of the reaction, the distillation was decompressed to remove the excess solvent, filtered and dried. White solid: 517.29 mg. Yield: 75.32%. m.p.: 124.6-126.4°C. Anal. calcd. For C₃₆H₃₈N₄O₁₀: C, 62.97; H, 5.58; N, 8.16. Found: C, 63.15; H, 5.49; N, 8.09. ¹H NMR (500 MHz, CDCl₃) δ 9.82 (s, 2H),8.51 (s, 2H), 8.23 (s, 2H), 7.79 (d, J = 7.7 Hz, 2H), 7.34 (t, J = 8.7 Hz, 2H), 6. 97(t, J = 7.5 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 6.8 Hz, 2H), 6.84 (t, J = 7. 8 Hz, 2H), 6.79 (dd, J = 7.7, 1.5 Hz, 2H), 4.47-4.45 (m, 4H), 4.45-4.43 (m, 4H), 4.35 (s, 4H), 3.89 (s, 6H) (**Figure S1**).

2.3 Experimental methods

2.3.1 Solution preparation

The samples used in the fluorescence spectroscopy of this experiment, including the bis(salamo)-like tetraoxime chemical sensor H₂L_s and the metal ions, were configured with a solution. The probe molecule is $[H_2L_s] = 1 \times 10^{-3}$ mol/L. The metal ion solutions are derived from their metal nitrates. Metal ions $[M^{n+}] = 1 \times 10^{-2}$ mol/L (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Cr³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Al³⁺).

2.3.2 Fluorescence spectroscopy experiment

The fluorescence spectroscopy experiments were performed with a reserve solution of chemical sensor **H2Ls** (V_{DMF}: V _{water} = 9:1, c = 1×10^{-3} mol/L). The concentration of the receptor molecules in the buffer of Tris-HCl in V_{DMF}: V _{water} (9/1, v/v, pH = 7.20) was diluted with a mixture of V_{DMF}: V _{water} = 9:1 to ensure a concentration of 1×10^{-5} mol/L. The metal ions used were metal nitrates (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Cr³⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Ag⁺ and Al³⁺) and the solvent was V _{DMF}: V _{water} = 9:1 solution (1×10^{-2} mol/L), the amount of metal ions added in the sample was 20 times of that of the chemical sensor **H2Ls**. The titration curves were determined by the cumulative addition of Cu²⁺ and Al³⁺, drop by drop. All experiments were conducted at room temperature. The testing conditions of all experiments were consistent: EX WL: 310.0 nm, EM WL: 388.0 nm, EX slit: 10.0 nm, EM Slit: 10.0 nm.

2.3.3 Method of pH measurement

The pH value was measured at room temperature by using the pH meter of model pHS-45. The pH value was adjusted in 1 mM Tris-HCl buffer solution with 1 M hydrochloric acid and 1 M tetrabutylammonium hydroxide solution.

2.3.4 Test experiment of H₂L_s chemical sensor on tap water sample

The fluorescence spectra of Cu^{2+} and Al^{3+} were determined by adding known amounts of Cu^{2+} and Al^{3+} to the tap water samples, tested five times in each sample, and the concentrations of Cu^{2+} and Al^{3+} were measured according to the calibration curves obtained from the fluorescence titration experiment.

2.3.5 Preparation of test paper

The filter paper was first soaked in 1 mol/L dilute hydrochloric acid, then dipped in distilled water for three times and washed to neutral. After vacuum drying, the filter paper was cut into a 5×1 cm filter paper piece, containing chemical sensor H₂Ls (V_{DMF}: V_{Water} = 9:1, c = 1×10^{-3} mol/L) solution is loaded on the filter paper, and then dried in vacuum. Under the UV light, the filter paper itself emits bright green fluorescence. The dried filter paper was directly applied to the identification test of Cu²⁺ in solution. It will also contain L_C (V_{DMF} : V_{Water} = 9:1, c = 1×10^{-3} mol/L) is

loaded on the filter paper, and the dried filter paper was directly applied to the identification test of Al^{3+} in the solution.

3. Results and discussion

3.1 Recognition of Cu^{2+} by the chemical sensor

3.1.1 Solvent to chemical sensor H_2L_S luminescence performance study

First, the effect of the solvent system on the fluorescence intensity of the molecular sensor should be considered. The impact of different commonly used solvents on the H₂Ls fluorescence intensity of the chemical sensor were compared at an excitation wavelength of 310 nm, slit width EX = 10 nm, and EM = 10 nm (as shown in Figure S3).

The solvent effect is the effect of the solvent on the rate, equilibrium and even the mechanism of the reaction. In the vast majority of organic chemical reactions occurring in solvents, the nature of the solvent is extremely important not only for the reaction rate but also for the reaction equilibrium. The hallmark of a fluorescent chemical sensor is the detection of ions by changes in fluorescence intensity, so the choice of solvent for the sensor is critical. The fluorescence emission intensity of **H**₂-Ls was measured in seven common organic solvents which could dissolve the probe **H**₂Ls, the results show that the fluorescence intensity of **H**₂Ls in DMF is relatively strong. Then select DMF as the solvent for future experiments [53-59].

3.1.2 Study of water content on the luminescence performance of chemical sensor **H**. ₂L_s

In order to study the fluorescence intensity of the chemical sensor H_2L_s in the aqueous system, the fluorescence intensity of the chemical sensor H_2L_s in the system with different water ratios was detected (as shown in Figure S4). The results showed that the fluorescence intensity of the chemical sensor H_2L_s gradually decreased as the water content of the system increased. After the water content exceeded 70%, flocculation began to appear in the system, proving that excess water content has a

more significant effect on the solubility of the sensor molecules. The chemical sensor fluorescence intensity is most vigorous in the V_{DMF} : $V_{water} = 9:1$ system. The V_{DMF} : $V_{water} = 9:1$ solvent system was then selected as the solvent for later experiments [60].

3.1.3 Study of the recognition performance of chemical sensor H_2L_S on Cu^{2+}

The fluorescence spectral characteristics of the chemical sensor H₂L_s with metal ions were studied. The DMF/H₂O (9/1, v/v, pH = 7.20) Tris-HCl buffer solution $(1\times10^{-5} \text{ mol/L})$ of chemical sensor emitted a strong fluorescence at approximately 310 nm. The addition of 20-fold equivalent metal ions to the solution caused the maximum emission peak of H₂L_s to disappear only when Cu²⁺ were added, while the maximum emission peak of H₂L_s did not change significantly when other metal ions were added (Figure 1).

3.1.4 Quantitation of Cu^{2+} fluorescence titrations and minimum detection limits

To investigate the quantification behavior of the chemical sensor H_2L_s for Cu^{2+} recognition, a fluorescence titration experiment was performed (as shown in **Figure S5**). The cumulative addition of Cu^{2+} to the DMF/H₂O solution of the chemical sensor H₂Ls resulted in a gradual decrease of the maximum emission peak at 310 nm as the amount of Cu^{2+} increased, and the maximum emission peak of the sensor H₂Ls completely disappeared when the amount of Cu^{2+} added was 2.0 times equivalent. The fluorescence intensity stabilized and did not change as the Cu^{2+} solution continued to be added. At the same time, it was observed that the color of the sensor solution changed from colorless to brown, which also provided a basis for visually detecting Cu^{2+} .

The experimental results showed that the chemical sensor H_2L_s had good selective recognition ability for Cu^{2+} in aqueous system. This result may be due to the cavity of a specific size formed by the chemical sensor H_2L_s itself. When the complex L_c is formed, the chemical sensor H_2L_s selectively coordinated with Cu^{2+} , thus reducing the fluorescence intensity of the chemical sensor H_2L_s . The limit of fluorescence detection (LOD) and limit of content (LOQ) of H_2L_s to Cu^{2+} were

calculated from the titration spectra of the sensor H_2L_s . Based on previous literature [61], the following equation was used to determine the LOD and LOQ.

LOD = K ×
$$\delta$$
/S; LOQ =10 × δ /S; $\delta = \sqrt{\frac{\sum (F_0 - \overline{F_0})^2}{N - 1}}$ (N = 20); K = 3

Where N, S, and F₀ are the measured values, slope, and fluorescence intensity of the blank solution of sensor H₂Ls, respectively. The minimum detection limit (LOD) of sensor H₂Ls to Cu²⁺ was calculated to be 6.62×10^{-7} M.

3.1.5 Anti-interference experimental determination of the fluorescent chemical sensor H_2L_s toward Cu^{2+}

The basic requirement of fluorescent chemical sensor is that it can selectively recognize ions. Therefore, the anti-interference experiment of Cu^{2+} was carried out on the sensor H₂Ls. First, Cu^{2+} was added to the sensor H₂Ls. Subsequently, other common metal ions were added, stirred and left for 10 min to measure the fluorescence intensity. The experimental results show that except for Al³⁺, other common metal ions have no obvious interference on the recognition of Cu^{2+} by H₂Ls (**Figure 2**). It is illustrated that the chemical sensor H₂Ls has better anti-interference resistance to the recognition of Cu^{2+} .

3.1.6 The pH response of the fluorescent chemical sensor H_2L_s to Cu^{2+}

To further investigate the applicable pH range of the fluorescence chemical sensor H₂Ls, the change of the fluorescence intensity of the fluorescence chemical sensor H₂Ls interacting with Cu²⁺ was studied when the pH value was between 2.0 and 13.0. As shown in **Figure S6**, the change in fluorescence intensity of fluorescent chemosensor H₂Ls between pH = 3 and 11 was insensitive, whereas, in the pH range between 3 and 8, the addition of Cu²⁺ significantly reduced the fluorescence intensity of fluorescent chemosensor H₂Ls has a better ability to recognize Cu²⁺ in the physiological pH range.

3.1.7 Time response of the fluorescent chemical sensor H_2L_s to Cu^{2+}

In order to investigate the response time of the fluorescent chemical sensor H_2L_s to Cu^{2+} , the response time of the fluorescent chemical sensor H_2L_s to Cu^{2+} was further studied. As shown in **Figure S7**, the experimental results showed that the response time of sensor receptor molecule H_2L_s to Cu^{2+} was about 10s. This result suggested that sensor H_2L_s can quickly recognize Cu^{2+} in aqueous systems.

3.1.8 Determination of the Job curve of the fluorescent chemical sensor H_2L_s with Cu^{2+}

To further determine the optimal ratio between the H₂L_S and Cu²⁺ of the fluorescence chemical sensor, the working curve of the H₂L_S and Cu²⁺ of the fluorescence chemical sensor was determined and plotted. As shown in Figure S8, the fluorescence intensity at approximately 397 nm of the sensor molecule showed an inflection point at a quantity fraction of 0.37 of the Cu²⁺ ion's substance, indicating that the coordination between the fluorescent chemical sensor H₂L_S and Cu²⁺ has occured according to a 1:2 chemometric ratio. The molecular ion peaks of m/z = 872.0987 (as shown in Figure S9) attributed to [(Ls +2Cu²⁺)NO₃-]⁺ can be seen from the ESI-MS spectrogram, further confirming that the fluorescent chemical sensor H₂-L_S is ligated to Cu²⁺ according to a 1:2 coordination ratio.

3.1.9 Calculation of the ligand constants of H_2L_s and Cu^{2+} in a fluorescent chemical sensor

The fluorescence titration experiments of the fluorescent chemosensor H₂L_s with Cu^{2+} , combined with the results of the titration work curve, and the ligand constant of the fluorescent chemosensor H₂L_s with Cu^{2+} calculated by Benesi-Hildebrand equation (1) is 3.50×10^{10} M⁻¹, which indicated that the fluorescent chemosensor H₂L_s had a powerful bonding ability to Cu^{2+} (shown in Figure S10).

$$1/(F - F_0) = 1/(Fmax - F_0) \{(Ka [M^{m+}]^n) + 1\}$$
(1)

F is the intensity of the fluorescence intensity corresponding to the Cu^{2+} concentration at 388 nm, F_0 is the intensity at 397 nm when the Cu^{2+} concentration is zero, and F_{max} is the maximum fluorescence intensity at 388 nm. [M^{m+}] is the

concentration of Cu^{2+} , and n is the chemometric ratio of the chemical sensor H₂L_s to Cu^{2+} [62]. Compared with other references [63-64], it was found that the binding constant of H₂L_s for Cu^{2+} recognition is larger, which indicates that the copper(II) complex of H₂L_s is more stable. In addition, the LOD of the chemical sensor H₂L_s is smaller than that of other Cu^{2+} probe in the literature, indicating that the chemical sensor is more sensitive to recognize Cu^{2+} . Binding constants and detection lines between the related chemosensors mentioned in literatures were compared, as shown in Table 1.

 Table 1 Comparison of binding constants and detection lines between the chemosensors.

3.1.10 Exploration of the mechanism of Cu^{2+} recognition by the fluorescent chemical sensor H_2L_S

Based on the above experimental results, a mechanism for the Cu^{2+} ions recognition by the fluorescent chemical sensor H₂L_s was proposed, as shown in Figure 3. The fluorescent chemical sensor H₂L_s itself gives green fluorescence. The outer electron configuration of Cu^{2+} is d⁹, which is paramagnetic and the formation of the complex L_C leads to fluorescence quenching of chemical sensor H₂L_s. According to Jahn-Teller effect, there are three electrons in the two degenerate d orbitals (Eg) of divalent copper(II) ions in octahedral complexes due to the splitting of crystal field. The number of electrons occupied in these two orbitals is different, and the complex is a nonlinear molecule, which leads to the splitting of Eg [65]. The results of splitting lead to Jahn-Teller distortion, and the Irving-Williams (CFSE increase) order obtained from the crystal field splitting energy is abnormal, which leads to the copper(II) complexes being more stable than other bivalent metal(II) complexes in the same period. After Cu²⁺ combines with H₂L_s, the copper(II) complex is more stable and has lower energy than H₂L_s.

The effect of the complexes in different oxidation states on the charge density is linear, indicating that there is a strong relationship between the charge density around the metal and the oxidation state [66-67]. In the presence of Cu^{2+} , the fluorescence intensity of the system is quenched. This indicates that Cu^{2+} interacts with the system effectively, which reduces the fluorescence intensity.

3.1.11 Experiments on tap water samples with Cu^{2+}

It was detecting Cu^{2+} in tap water with H₂Ls to explore the utility of chemical sensor H₂Ls. A test sample was first made by adding a known exact amount of Cu^{2+} to tap water. Quantitative analysis of the test samples using the standard addition method using fluorescence spectroscopy was repeated. It can be seen from Table S1 that the average recoveries ranged from 97.6% to 104.2% with relative standard deviations within 3%. The chemical sensor H₂Ls was shown to be suitable for the quantitative detection of Cu^{2+} in tap water.

3.1.12 Application of test paper

Based on the fluorescence selectivity of the chemical sensor to Cu^{2+} , fluorescence detection test papers loaded with the sensor H₂Ls were fabricated. The dilute hydrochloric acid-treated filter paper was immersed in a DMF/H₂O solution of sensor H₂Ls at a concentration of 1.0×10^{-4} mol/L for loading. After the load was uniform, the test paper was placed in a vacuum drying chamber and dried at low temperature, and then dried paper was used for Cu²⁺ determination. Before the test, the test paper was green under UV light. After dropping the Cu²⁺ solution on the strip, the color of the test paper became colorless under the UV light, as shown in **Figure 4**.

3.2 Study of the recognition performance of the chemical sensor L_C on Al^{3+}

3.2.1 Fluorescence recognition study of metal ions by L_C

Through the study and exploration of the preliminary experiments, it was found that H₂Ls had a good recognition effect on Cu^{2+} in aqueous system. However, in anti-interference experiments, the presence of Al^{3+} in the system affected the recognition of Cu^{2+} . Therefore, it was envisaged that after the Cu^{2+} was recognized, the sensor will continuously recognize Al^{3+} . With this scenario in mind, the

fluorescence recognition properties of the complex L_C as a sensor L_C on various metal ions were investigated.

As shown in **Figure S11**, in the solution of the sensor L_C the fluorescence intensity of the sensor L_C changed almost nothing with the addition of other metal ions, only the fluorescence was enhanced with the addition of Al^{3+} . The sensor L_C has single recognition for Al^{3+} .

3.2.2 Anti-interference experimental study of L_C on Al^{3+} recognition

As can be seen from the competition experiment (**Figure S12**), the recognition of L_C to Al^{3+} was not affected when other metal ions were present. Only the Al^{3+} can replace the Cu^{2+} in the complex L_C to form a new complex L_C . Thus, the sensor L_C had high selectivity and single recognition as a chemical sensor for identifying Al^{3+} .

3.2.3 Fluorescence titration of L_C against Al^{3+}

Fluorescence titration experiments were performed, and the minimum detection limit of L_c for Al³⁺ was calculated, as shown in **Figure S13**. The intensity of the emission peak of L_c increased with the constant addition of Al³⁺ until the emission spectrum does not change with the addition of 3.0 equivalents of Al³⁺. The results showed that the Cu²⁺ in the complex L_c were utterly replaced by Al³⁺ and formed L_c -Al³⁺. Thus, the fluorescence intensity gradually increased.

At the same time, the binding equilibrium constant ($K_2 = 3.05 \times 10^{11} \text{ M}^{-1}$) of L_C to Al³⁺ was calculated based on linear fitting (**Figure S18**), and it was found that the binding equilibrium constant of H₂Ls to Al³⁺ was ten times higher than that of H₂Ls to Cu²⁺. Besides, the minimum detection limit of L_C for Al³⁺ is 5.33×10^{-7} M. Reference to other literature [68-69], comparison of binding constants and detection lines between the chemosensors as shown in Table 1.

3.2.4 The pH response of the fluorescent chemical sensor L_C to Al^{3+}

To further investigate the applicable pH range of the fluorescence chemical sensor Lc, the change of the fluorescence intensity of the fluorescence chemical

sensor L_C interacting with Al^{3+} was studied when the pH value was between 2 and 13. As shown in **Figure S14**, the change in fluorescence intensity of fluorescent chemosensor L_C between pH = 4 and 11 was insensitive, whereas, in the pH range between 5 and 8, the addition of Al^{3+} significantly enhanced the fluorescence intensity of fluorescent chemosensor L_C. The results show that the fluorescent chemical sensor L_C has a better ability to recognize Al^{3+} in the neutral pH range.

3.2.5 Time response of the fluorescent chemical sensor L_C to Al^{3+}

In order to investigate the response time of the fluorescent chemical sensor L_C to Al^{3+} , the response time of the fluorescent chemical sensor L_C to Al^{3+} was further studied. As shown in **Figure S15**, the experimental results show that the response time of sensor receptor molecule L_C to Al^{3+} is about 20 s. This result suggests that sensor L_C can quickly recognize Al^{3+} in systems.

3.2.6 Determination of Job curves of L_C versus Al^{3+}

Working curves of L_C and Al³⁺ were plotted to determine further the optimal ratio of L_C and Al³⁺. As shown in **Figure S16**, the fluorescence intensity of the sensor molecule appeared a turning point at the mass fraction of 0.75 for Al³⁺. This result indicated that the fluorescence chemical sensor L_C was coordinated with the Al³⁺, according to the stoichiometry of 1:3. The molecular ion peaks of m/z = 819.2246 (as shown in **Figure S17**) attributed to [(L_S+3Al³⁺)·H₂O·DMF]⁷⁺ can be seen from the ESI-MS spectrogram, further verifying that the L_C and Al³⁺ were ligated according to a 1:3 coordination ratio.

3.2.7 Exploration of the mechanism of Al^{3+} ion recognition by L_C

The mechanism of L_c recognition of Al^{3+} is proposed based on the above experimental results, as shown in **Figure 5**. The outer electron configuration of Al^{3+} is p^{6} , and the p orbital is full, which forms a one-dimensional plane $[(Ls+3Al^{3+})\cdot H_2O\cdot DMF]^{7+}$ due to the addition of Al^{3+} , and the chelation-enhanced fluorescence (CHEF) is the main reason for the enhanced fluorescence [70-71]. In the

presence of Al^{3+} , the fluorescence intensity of the system is enhanced, which means that the copper(II) complex of **H**₂**L**₈ as a quenched fluorescent group is activated at the presence of Al^{3+} in water system, which improves the fluorescence intensity of **L**_c. In addition, the planarity of the complex structure is also enhanced, leading to a strong PET (photoinduced electron tranfer) from the receptor, which further enhances the fluorescence emission [72-73].

3.2.8 Application of test paper

Based on the fluorescence selectivity of the chemical sensor L_C to Al^{3+} , fluorescence detection test papers loaded with the sensor L_C were fabricated. The dilute hydrochloric acid-treated filter paper was immersed in a DMF/H₂O solution of the copper(II) complex of H₂Ls at a concentration of 1.0×10^{-4} mol/L for loading. After the load was uniform, the test paper was placed in a vacuum drying chamber and dried at low temperature, and then dried paper was used for Al^{3+} determination. Before the test, the test paper was colorless under UV light. After dropping the Al^{3+} solution on the strip, the color of the test paper became green under the UV light, as shown in Figure 4.

4. Conclusion

In this paper, Cu^{2+} was first detected by using a bis(salamo)-like tetraoxime chemical sensor H₂L₅. The experimental results showed that the sensor H₂L₅ can detect Cu^{2+} in aqueous solution by the fluorescence quenching phenomenon. The advantages of the sensor H₂L₅ for detection of Cu^{2+} are a low detection limit, high coordination constant, a wide pH range (3.0~8.0), and fast response time (about 10 seconds). A test paper loaded with the sensor H₂L₅ has been prepared for the detection of Cu^{2+} in aqueous solution easily, quickly, accurately and qualitatively. Therefore, this fluorescent chemical sensor has potential applications for detecting Cu^{2+} in real life. Besides, the sensor L_C can identify Al³⁺ in the system and achieves interference-free identification of Al³⁺ by other trivalent metals.

Conflicts of Interest

The authors declare no competing financial interests.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21761018), Science and Technology Program of Gansu Province (18YF1GA054), and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), three of which are gratefully acknowledged.

References

- [1] S. Zeng, S.J. Li, T.T. Liu, X.J. Sun, Z.Y. Xing, A significant fluorescent "turn-on" chemosensor for Al³⁺ detection and application in real sample, logic gate and bioimaging, Inorg. Chim. Acta. 495 (2019) 1873-3255.
- [2] Y. Xu, L. Yang, H. Wang, Y. Zhang, X. Yang, M. Pei, G. Zhang, A new "off-on-off" sensor for sequential detection of Al³⁺ and Cu²⁺ with excellent sensitivity and selectivity based on different sensing mechanisms, J. Photochem. Photobiol. A 391 (2020) 1010-6030.
- [3] Y. Wu, X. Wen, Z. Fan, Selective and Sensitive Fluorescence Probe for Detection of Al³⁺ in Food Samples Based on Aggregation-Induced Emission and Its Application for Live Cell Imaging, Food. Anal. Methods 12 (2019) 1736-1746.
- [4] J.H. Wang, Y.M. Liu, J.B. Chao, H. Wang, Y. Wang, S. Shuang, A simple but efficient fluorescent sensor for ratiometric sensing of Cd²⁺ and bio-imaging studies, Sens. Actuators B 303 (2020) 127216.
- [5] C. Varadaraju, M.S. Paulraj, G. Tamilselvan, I.V.M.V. Enoch, V. Srinivasadesikan, L. Shyi-Long, Evaluation of metal ion sensing behaviour of fluorescent probe along with its precursors: PET-CHEF mechanism, molecular logic gate behaviour and DFT studies, J. Incl. Phenom. Macrocycl. Chem. 95 (2019) 79-89.
- [6] P.G. Sutariya, H. Soni, S.A. Gandhi, A. Pandya, Luminescent behavior of pyrene-allied calix 4 arene for the highly pH-selective recognition and determination of Zn²⁺, Hg²⁺ and I⁻ via the CHEF-PET mechanism: computational experiment and paper-based device, New J. Chem 43 (2019) 9855-9864.

- [7] P.G. Sutariya, H. Soni, S.A. Gandhi, A. Pandya, Novel tritopic calix 4 arene CHEF-PET fluorescence paper based probe for La³⁺, Cu²⁺, and Br⁻: Its computational investigation and application to real samples, J. Lumin. 212 (2019) 171-179.
- [8] S. Slassi, M. Aarjane, A. El-Ghayoury, A. Amine, A highly turn-on fluorescent CHEF-type chemosensor for selective detection of Cu²⁺ in aqueous media, Spectrochim. Acta A 215 (2019) 348-353.
- [9] S. Saha, S. Das, P. Sahoo, Highly Selective Optical and Fluorescence "Turn On" Signaling of Al³⁺: Cell Imaging and Estimation in Rice Plant, Chemistryselect 4 (2019) 13968-13973.
- [10] V. Raju, R.S. Kumar, Y. Tharakeswar, S.K.A. Kumar, A multifunctional Schiff-base as chromogenic chemosensor for Mn²⁺ and fluorescent chemosensor for Zn²⁺ in semi-aqueous environment, Inorg. Chim. Acta. 493 (2019) 49-56.
- [11] S. Mondal, S.M. Mandal, D. Ojha, D. Chattopadhyay, C. Sinha, Water soluble sulfaguanidine based Schiff base as a "Turn-on" fluorescent probe for intracellular recognition of Zn²⁺ in living cells and exploration for biological activities, Polyhedron 172 (2019) 28-38.
- [12] A. Asaithambi, D. Okada, G. Prinz, H. Sato, A. Saeki, T. Nakamura, T. Nabeshima, Y. Yamamoto, A. Lorke, Polychromatic Photoluminescence of Polymorph Boron Dipyrromethene Crystals and Heterostructures, J. Phys. Chem. 123 (2018) 5061-5066.
- [13] T. Hojo, R. Matsuoka, T. Nabeshima, A Conformationally Flexible Macrocyclic Dipyrrin Tetramer and Its Unsymmetrically Twisted Luminescent Zinc(II) Complex, Inorg. Chem. 58 (2019) 995-998.
- [14] T. Hojo, T. Nakamura, R. Matsuoka, T. Nabeshima, Uniquely folded shapes, photophysical properties, and recognition abilities of macrocyclic BODIPY oligomers, Heteroatom Chem. 29 (2018) e21470.
- [15] A. Nagai, T. Nakamura, T. Nabeshima, A twisted macrocyclic hexanuclear palladium complex with internal bulky coordinating ligands, Chem. Commun. 55 (2019) 2421-2424.
- [16] T. Nakamura, Y. Kawashima, E. Nishibori, T. Nabeshima, Bpytrisalen/Bpytrisaloph: A Triangular Platform That Spatially Arranges Different Multiple Labile Coordination Sites, Inorg. Chem. 58 (2019) 7863-7872.
- [17] S. Maity, M. Shyamal, R. Maity, N. Mudi, P. Hazra, P.K. Giri, S.S. Samanta, S. Pyne, A. Misra, An antipyrine based fluorescent probe for distinct detection of Al³⁺ and Zn²⁺ and its

AIEE behaviour, Photochem. Photobiol. Sci. 19 (2020) 681-694.

- [18] T. Nakamura, S. Tsukuda, T. Nabeshima, Double-Circularly Connected Saloph-Belt Macrocycles Generated from a Bis-Armed Bifunctional Monomer, J. Am. Chem. Soc. 141 (2019) 6462-6467.
- [19] M. Saikawa, T. Noda, R. Matsuoka, T. Nakamura, T. Nabeshima, Heterodinuclear Group 13 Element Complexes of N₄O₆-Type Dipyrrin with an Unsymmetrical Twisted Structure, Eur. J. Inorg. Chem. 6 (2019) 766-769.
- [20] L. Wang, Z.L. Wei, C. Liu, W.K. Dong, J.X. Ru, Synthesis and characterization for a highly selective bis(salamo)-based chemical sensor and imaging in living cell, Spectrochim. Acta A 239 (2020) 118496.
- [21] C. Liu, Z.L. Wei, H.R. Mu, W.K. Dong, Y.J. Ding, A novel unsymmetric bis(salamo)-based chemosensor for detecting Cu²⁺ and continuous recognition of amino acids, J. Photochem. Photobio. A 397 (2020) 112569.
- [22] X.Y. Dong, Q.P. Kang, X.Y. Li, J.C. Ma, W.K. Dong, Structurally characterized solventinduced homotrinuclear cobalt(II) N₂O₂-donor bisoxime-type complexes, Crystals 8 (2018) 139.
- [23] Y.D. Peng, X.Y. Li, Q.P. Kang, Y. Zhang, W. K. Dong, Synthesis and fluorescence properties of asymmetrical salamo-type tetranuclear zinc(II) complex, Crystals 8 (2018) 107.
- [24] X.X. An, Z.Z. Chen, H.R. Mu, L. Zhao, Investigating into crystal structures and supramolecular architectures of four newly synthesized hetero-octanuclear [Cu^{II}₄-Ln^{III}₄] (Ln = Sm, Eu, Tb and Dy) complexes produced by a hexadentate bisoxime chelate ligand, Inorg. Chim. Acta 511 (2020) 119823.
- [25] X.Y. Li, Q.P. Kang, C. Liu, Y. Zhang, W.K. Dong, Structurally characterized homo-trinuclear Zn^{II} and hetero-pentanuclear [Zn^{II}₄Ln^{III}] complexes constructed from an octadentate bis(Salamo)-based ligand: Hirshfeld surfaces, fluorescence and catalytic properties, New J. Chem. 43 (2019) 4605-4619.
- [26] X.X. An, Q. Zhao, H.R. Mu, W.K. Dong, A new half-salamo-based homo-trinuclear nickel(II) complex: Crystal structure, Hirshfeld surface analysis, and fluorescence properties, Crystals 9 (2019) 101.
- [27] C. Liu, X.X. An, Y.F. Cui, K.F. Xie, W.K. Dong, Novel structurally characterized hetero-

bimetallic $[Zn(II)_2M(II)]$ (M = Ca and Sr) bis(salamo)-type complexes: DFT calculation, Hirshfeld analyses, antimicrobial and fluorescent properties, Appl. Organomet. Chem. 34 (2020) e5272.

- [28] S. Yonemura, T. Nakamura, T. Nabeshima, Threading/Folding Recognition Modes of Phosphodiesters by a p-Nitrophenylamide Cyclodextrin Derivative, Chem. Lett. 49 (2020) 493-496.
- [29] L.W. Zhang, Y. Zhang, Y.F. Cui, M. Yu, W.K. Dong, Heterobimetallic [Ni^{II}Ln^{III}] (Ln = Sm and Tb) N₂O₄-donor coordination polymers: syntheses, crystal structures and fluorescence properties, Inorg. Chim. Acta 506 (2020) 119534.
- [30] H.R. Mu, X.X. An, C. Liu, Y. Zhang, W.K. Dong, Structurally characterized self-assembled heterobimetallic Ni(II)-Eu(III)-salamo-bipyridine coordination polymer: Synthesis, photophysical and antimicrobial properties, J. Struct. Chem. 61 (2020) 1218-1229.
- [31] Y. Zhang, M. Yu, Y.Q. Pan, Y. Zhang, L. Xu, X.Y. Dong, Three rare heteromultinuclear 3d-4f salamo-like complexes constructed from auxiliary ligand 4,4'-bipy: Syntheses, structural characterizations, fluorescence and antimicrobial properties, Appl. Organomet. Chem. 34 (2020) e5442.
- [32] L. Wang, Y.Q. Pan, J.F. Wang, Y. Zhang, Y.J. Ding, A highly selective and sensitive half-salamo-based fluorescent chemosensor for sequential detection of Pb(II) ion and Cys, J. Photochem. Photobio. A, 400 (2020) 112719.
- [33] Y.Q. Pan, Y. Zhang, M. Yu, Y. Zhang, L. Wang, Newly synthesized homomultinuclear Co (II) and Cu (II) bissalamo-like complexes: structural characterizations, Hirshfeld analyses, fluorescence and antibacterial properties, Appl. Organomet. Chem. 34 (2020) e5441.
- [34] M. Yu, Y. Zhang, Y.Q. Pan, L. Wang, Two novel copper (II) salamo-based complexes: syntheses, X-ray crystal structures, spectroscopic properties and Hirshfeld surfaces analyses, Inorg. Chim. Acta 509 (2020) 119701.
- [35] F. Wang, L. Gao, Q. Zhao, Y. Zhang, W.K. Dong, Y.J. Ding, A highly selective fluorescent chemosensor for CN⁻ based on a novel bis(salamo)-type tetraoxime ligand, Spectrochim. Acta A 190 (2018) 111-115.
- [36] Y.Q. Pan, X. Xu, Y. Zhang, Y. Zhang, W.K. Dong, A highly sensitive and selective bis(salamo)-type fluorescent chemosensor for identification of Cu²⁺ and the continuous

recognition of S²⁻, arginine and lysine, Spectrochim. Acta A 229 (2020) 117927.

- [37] Z.L. Wei, L. Wang, J.F. Wang, W.T. Guo, Y. Zhang, W. K. Dong, Two highly sensitive and efficient salamo-like copper(II) complex sensors for recognition of CN⁻, Spectrochim. Acta A 228 (2020) 117775.
- [38] V. Kumar, S. Kundu, B. Sk, A. Patra, A naked-eye colorimetric sensor for methanol and 'turn-on' fluorescence detection of Al³⁺, New J. Chem. 43 (2019) 18582-18589.
- [39] L.M. Pu, X.Y. Li, J. Hao, Y.X. Sun, Y. Zhang, H.T. Long, W.K. Dong, Exploration and application of a highly sensitive bis(salamo)-based fluorescent sensor for $B_4O_7^{2-}$ in water-containing systems and living cells, Sci. Rep. 8 (2018) 14058.
- [40] W.K. Dong, S.F. Akogun, Y. Zhang, Y.X. Sun, X.Y. Dong, A reversible "turn-on" fluorescent sensor for selective detection of Zn²⁺, Sens. Actuators B 238 (2017) 723-734.
- [41] W.K. Dong, X.L. Li, L. Wang, Y. Zhang, Y.J. Ding, A new application of salamo-type bisoximes: as a relay–sensor for Zn²⁺/Cu²⁺ and its novel complexes for successive sensing of H⁺/OH⁻, Sens. Actuators B 229 (2016) 370-378.
- [42] L. Wang, Z.L. Wei, Z.Z. Chen, C. Liu, W. K. Dong, Y. J. Ding, A chemical sensor capable for fluorescent and colorimetric detection to Cu²⁺ and CN⁻ based on coordination and nucleophilic addition mechanism, Microchem. J. 155 (2020) 104801.
- [43] Q.P. Kang, X.Y. Li, L. Wang, Y. Zhang, W.K. Dong, Containing-PMBP N₂O₂-donors transition metal (II) complexes: synthesis, crystal structure, Hirshfeld surface analyses and fluorescence properties, Appl. Organomet. Chem. 33 (2019) e5013.
- [44] J. Hao, X.Y. Li, Y. Zhang, W.K. Dong, A reversible bis(salamo)-based fluorescence sensor for selective detection of Cd²⁺ in water-containing systems and food samples, Materials 11 (2018) 523.
- [45] Q.P. Kang, X.Y. Li, Z.L. Wei, Y. Zhang, W.K. Dong, Symmetric containing-PMBP N₂O₂-donors nickel(II) complexes: syntheses, structures, Hirshfeld analyses and fluorescent properties, Polyhedron 165 (2019) 38-50.
- [46] Q. Zhao, X.X. An, L.Z. Liu, W.K. Dong, Syntheses, luminescences and Hirshfeld surfaces analyses of structurally characterized homo-trinuclear Zn^{II} and hetero-pentanuclear Zn^{II}-Ln^{III} (Ln=Eu, Nd) bis(salamo)-like complexes, Inorg. Chim. Acta 490 (2019) 6-15.

- [47] L.Z. Liu, M. Yu, X.Y. Li, Q.P. Kang, W.K. Dong, Syntheses, structures, Hirshfeld analyses and fluorescent properties of two Ni(II) and Zn(II) complexes constructed from a bis(salamo)-like ligand, Chin. J. Inorg. Chem. 35 (2019) 1283-1294.
- [48] J.C. Ma, X.Y. Dong, W.K. Dong, Y. Zhang, L.C. Zhu, J.T. Zhang, An unexpected dinuclear Cu(II) complex with a bis(Salamo) chelating ligand: Synthesis, crystal structure, and photophysical properties, J. Coord. Chem. 69 (2016) 149-159.
- [49] H.R. Mu, M. Yu, L. Wang, Y. Zhang Y.J. Ding, Catching S²⁻ and Cu²⁺ by a highly sensitive and efficient salamo-like fluorescence-ultraviolet dual channel chemosensor, Phosphorus Sulfur Silicon Relat. Elem. 195 (2020) 730-739.
- [50] Y.X. Sun, Y.Q. Pan, X. Xu, Y. Zhang, Unprecedented dinuclear Cu^{II} N,O-donor complex: Synthesis, structural characterization, fluorescence property, and Hirshfeld analysis. Crystals 9 (2019) 607.
- [51] L.Z. Liu, L. Wang, M. Yu, Q. Zhao, Y. Zhang, Y.X. Sun, W. K. Dong, A highly sensitive and selective fluorescent "off-on-off" relay chemosensor based on a new bis(salamo)-type tetraoxime for detecting Zn²⁺ and CN⁻, Spectrochim. Acta A 222 (2019) 117209.
- [52] Y. Zhang, L.Z. Liu, Y.D. Peng, N. Li, W.K. Dong, Structurally characterized trinuclear nickel(II) and copper(II) salamo-type complexes: syntheses, Hirshfeld analyses and fluorescent properties, Transit. Met. Chem. 44 (2019) 627-639.
- [53] S. Khanra, S. Ta, M. Ghosh, S. Chatterjee, D. Das, Subtle structural variation in azine/imine derivatives controls Zn²⁺ sensitivity: ESIPT-CHEF combination for nano-molar detection of Zn²⁺ with DFT support, Rsc Advances 9 (2019) 21302-21310.
- [54] S.Z. Zhang, J. Chang, H.J. Zhang, Y.X. Sun, Y. Wu, Y.B. Wang, Synthesis, crystal structure and spectral properties of binuclear Ni(II) an Cubane-like Cu₄(μ₃-O)₄ cored tetranuclear Cu(II) complexes based on coumarin Schiff base, Chin. J. Inorg. Chem. 36 (2020) 503-514.
- [55] J. Chang, S.Z. Zhang, Y. Wu, H.J. Zhang, Y.X. Sun, Three supramolecular trinuclear nickel(II) complexes based on Salamo-type chelating ligand: syntheses, crystal structures, solvent effect, Hirshfeld surface analysis and DFT calculation, Transit. Met. Chem. 45 (2020) 279-293.
- [56] B. Das, A. Jana, A. Das Mahapatra, D. Chattopadhyay, A. Dhara, S. Mabhai, S. Dey, Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via 'turn on' response and its

application in live cell imaging, Spectrochim. Acta A 212 (2019) 222-231.

- [57] J.B. Chae, H. Lee, C. Kim, Determination of Zinc Ion by a Quinoline-Based Fluorescence Chemosensor, Journal of Fluorescence 30 (2020) 347-356.
- [58] K. Aich, S. Das, S. Gharami, L. Patra, T.K. Mondal, Two New Quinoline-Benzothiazole Blended 'Off-On' Type Fluorescent Probes Exclusively Detect Cd²⁺, Chemistryselect 4 (2019) 8068-8073.
- [59] T.W. Chen, U. Rajaji, S.M. Chen, J.Y. Wang, Z.A. Alothman, M.A. Ali, S.M. Wabaidur, F.A. Hemaid, S.Y. Lee, W.H. Chang, Sonochemical preparation of carbon nanosheets supporting cuprous oxide architecture for high-performance and non-enzymatic electrochemical sensor in biological samples, Ultrason. Sonochem. 66 (2020) 1350-4177.
- [60] G.J. Park, H. Kim, J.J. Lee, Y.S. Kim, S.Y. Lee, S. Lee, I. Noh, C. Kim, A highly selective turn-on chemosensor capable of monitoring Zn²⁺ concentrations in living cells and aqueous solution, Sens. Actuators B 215 (2015) 568-576.
- [61] S. Nandi, A. Sahana, B. Sarkar, S.K. Mukhopadhyay, D. Das, Pyridine Based Fluorescence Probe: Simultaneous Detection and Removal of Arsenate from Real Samples with Living Cell Imaging Properties, Journal of Fluorescence 25 (2015) 1191-1201.
- [62] S. Mukherjee, S. Talukder, A Reversible Pyrene-based Turn-on Luminescent Chemosensor for Selective Detection of Fe³⁺ in Aqueous Environment with Logic Gate Application, Journal of Fluorescence 26 (2016) 1021-1028.
- [63] M. Tian, H. He, B.B. Wang, X. Wang, Y. Liu, F.L. Jiang, A reaction-based turn on fluorescence sensor for the detection of Cu(II) with excellent sensitivity and selectivity: Synthesis, DFT calculations, kinetics and application in real water samples, Dyes Pigm. 165 (2019) 383-390.
- [64] M. Sahu, A. Kumar Manna, K. Rout, J. Modal, G.K. Patra, A highly selective thiosemicarbazonebased Schiff base chemosensor for colorimetric detection of Cu²⁺ and Ag⁺ ions and turn-on fluorometric detection of Ag⁺ ions, Inorg. Chim. Acta 508 (2020) 119633.
- [65] L. Li, Y. Shen, Y.H. Zhao, L. Mu, X. Zeng, C. Redshaw, G. Wei, A single chemosensor for multiple analytes: Fluorogenic and ratiometric absorbance detection of Zn²⁺, Mg²⁺ and F⁻, and its cell imaging, Sens. Actuators B 226 (2016) 279-288.
- [66] H.J. Daniela Soledad, H.H. Jose Guadalupe, H.A. Carlos Alberto, T. Pandiyan, Novel insight

of indium(III) complex of N, N'-bis(salicylidene)ethylenediamine as chemo-sensor for selective recognition of HSO_4^- and hemolytic toxicity (Red Blood Cells) studies: Experimental and theoretical studies, Sens. Actuators B 293 (2019) 357-365.

- [67] H.A. Carlos Alberto, R.G. Brayan, T. Pandiyan, N. Jayanthi, S. Narinder, Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells, Photochem. Photobiol. Sci. 18 (2019) 1761.
- [68] K.S. Shen, S.S. Mao, X.K. Shi, F. Wang, Y.L. Xu, S.O. Aderinto, H.L. Wu, Characterization of a highly Al³⁺-selective fluorescence probe based on naphthalimide-Schiff base and its application to practical water samples, Luminescence 1 (2017) 54-63.
- [69] H.P. Peng, K.S. Shen, S.S. Mao, X.K. Shi, Y.L. Xu, S.O. Aderinto, H.L. Wu, A highly selective and sensitive fluorescent turn-on probe for Al³⁺ based on naphthalimide Schiff base, J. Fluores. 27 (2017) 1191-1200.
- [70] H.A. Carlos Alberto, T. Pandiyan, R. Pushap, S. Narinder, Z. Rodolfo, Fluorescent organic nanoparticles (FONs) for the selective recognition of Zn²⁺: Applications to multi-vitamin formulations in aqueous medium, Sens. Actuators B 223 (2016) 59-67.
- [71] H.A. Carlos Alberto, R. Pushap, T. Pandiyan, S. Narinder, Fluorescent organic nanoparticles (FONs) for selective recognition of Al³⁺: application to bio-imaging for bacterial sample, RSC Advances 44 (2016) 37944-37952.
- [72] J.A.O. Granados, P. Thangarasu, N. Singh, J. M. Vazquez-Ramos, Tetracycline and its quantum dots for recognition of Al³⁺ and application in milk developing cells bio-imaging, Food Chem. 278 (2019) 523-532.
- [73] C. A. Huerta-Aguilar, T. Pandiyan, N. Singh, N. Jayanthi, Three novel input logic gates supported by fluorescence studies: organic nanoparticles (ONPs) as chemo-sensor for detection of Zn²⁺ and Al³⁺ in aqueous medium, Spectrochim. Acta A 146 (2015) 142-150.

Author Biographies

Ruo-Nan Bian is currently pursuing her master's degree in the School of Chemical and Biological Engineering at Lanzhou Jiaotong University, China. She obtained her B.S. in the School of Chemical and Biological Engineering at Lanzhou Jiaotong University, China, in 2017.

Ji-Fa Wang is currently pursuing his master's degree in the School of Chemical and Biological Engineering at Lanzhou Jiaotong University, China. He obtained his B.S. in the School of Materials Science and Engineering at Qilu University of Technology, China, in 2018.

Ya-Juan Li is currently pursuing her master's degree in the School of Chemical and Biological Engineering at Lanzhou University, China. She obtained her B.S. in the School of chemical engineering and technology, at Tianshui Normal University, China, in 2018.

Yang Zhang received his PhD degree in 2019 from Lanzhou Jiaotong University, China. He is a lecturer in the school of chemistry and bioengineering of Lanzhou Jiaotong University now.

Wen-Kui Dong received his PhD degree in 1998 from Lanzhou University, China. He is a professor in the School of Chemical and Biological Engineering at Lanzhou Jiaotong University. His current research interests are focusing on the chemistry of functional supramolecular complexes, materials and new products, as well as processes and applications of environmental chemical engineering.

No.	sensor	Binding constant (M ⁻¹)	Detection limit (M)	Identification substance	pH range	Reference
1	NO2 RhB-Cu	$6.42 imes 10^4$	$4.7 imes 10^{-6}$	Cu ²⁺	4~8	[63]
2	N NH2	$2.4 imes 10^2$	$1.7 imes 10^{-6}$	Cu ²⁺	4~12	[64]
3	$ \begin{pmatrix} & & \\ &$	$2.6 imes 10^4$	3.4×10^{-7}	Al ³⁺	4.5~9.5	[68]
4	$(f_{H_{0}}) (f_{H_{0}}) (f_{$	4.95×10^4	$8.65 imes 10^{-8}$	Al ³⁺	5~8	[69]
5	$ \begin{pmatrix} 0 - N & N - 0 \\ 0 - N & N - 0 \\ 0 - N & N - 0 \\ 0 - N & 0 + H \\ 0 + H \\ 0 + 0 + 0 \\ 0 - + 0 \\ 0 +$	$3.5 imes 10^{10}$	6.62×10^{-7}	Cu ²⁺	3~11	This work
		3.05×10^{11}	5.33×10^{-7}	Al^{3+}	5~8	This work

Table	1	Comparison	of	binding	constants	and	detection	lines	between	the
chemo	sen	sors.								

Figure 1 Fluorescence spectra of chemical sensor H₂L_s and metal ions (20 equiv.) in DMF/H₂O buffer solution (H₂L_s, 1×10^{-3} mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.20).

Figure 2 The sensor H_2L_s (1×10⁻³ mol/L) in DMF/H₂O buffer solution buffer solution for Cu²⁺ recognition anti-interference experiment. (Emission peak at 388 nm, the black bar is the fluorescence intensity of the chemical sensor H_2L_s , the red bar is the fluorescence intensity of the sensor H_2L_s with Cu²⁺ added, the blue bar is the fluorescence intensity of $H_2L_s+Cu^{2+}$ after adding common metal ion. H_2L_s , 1×10⁻³ mol/L; Tris-HCl buffer solution, 9/1, v/v, pH = 7.20).

Figure 3 Proposed recognition mechanism of Cu²⁺ by fluorescence chemical sensor H₂Ls

Figure 4 The photos of chemical sensor H₂Ls using test paper (a) H₂Ls; (b) L_C; (c) L_{C} +Al³⁺; (d) H₂Ls+other metal ions; (e) L_C + other metal ions; (e) L_C + other metal ions+Al³⁺ (all taken under 365 nm ultraviolet lamp).

Figure 5 Proposed recognition mechanism of Al^{3+} by fluorescent chemical sensor L_{C-}

Figure 1

Figure 2

Figure 3

Figure 5