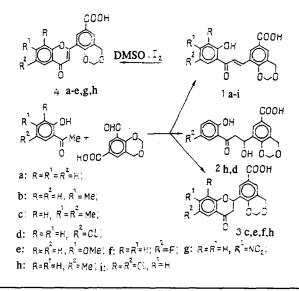
SYNTHETIC ANALOGS OF NATURAL FLAVOLIGNANS. III. SYNTHESIS OF 6-CARBOXY-1,3-BENZODIOXANE ANALOGS OF SILANDRIN AND HYDNOCARPIN


A. Aitmambekov, D. M. Zakharik, and V. P. Khilya

UDC 547.814.5

Chalcones containing a 6-carboxy-1, 3-benzodioxane fragment and, from them, flavanone and flavone analogs of silandrin and hydnocarpin have been synthesized. The structures of the compounds obtained were confirmed by their PMR spectra.

We have previously [1, 2] reported the synthesis of 1,4-benzodioxane and 1,5-benzodioxepane analogs of silandrin and hydnocarpin. In the present paper we give the results of an investigation of the synthesis of 6-carboxy-1,3-benzodioxane analogs of silandrin and hydnocarpin with simplified structures. As our investigations [3-5] have shown, a simplification of the structure of natural flavolignans (silandrin, hydnocarpin) and also the introduction of various functional groups into the molecules of their synthetic analogs, as well as a change in the mutual positions of the oxygen atoms in the benzodioxane fragment, are not infrequently accompanied by the appearance of extremely valuable biological properties and chemical characteristics. Being guided by these, we have obtained key compounds for the synthesis of silandrin and hydnocarpin analogs — substituted 2'-hydroxychalcones (1) containing a 6-carboxy-1,3-benzodioxane fragment in their molecule.

The introduction of a carboxy group into the molecule of a flavonoid makes it easily possible to convert the compounds obtained into salts, which ensures their solubility in water. However, the salt-forming reaction with the participation of the carboxy group of the aldehyde used in this work has an adverse effect on its capacity for condensing with 2-hydroxyacetophenones under the conditions of the classical Claisen-Schmidt reaction. Condensation does not take place because the alcohol-insoluble salt of 6-carboxy-8-formyl-1,3-benzodioxane is formed. We have established that in this case a suitable method of achieving condensation is that of [6], according to which the reaction is performed in dimethylformamide in the presence of powdered caustic potash. By this procedure, chalcones (2a-i) were formed with good yields.

KIEN, Karakalpak Division, Academy of Sciences of the Republic of Uzbekistan, Nukus. Taras Shevchenko Kiev University, Ukraine. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 484-489, July-August, 1994. Original article submitted August 27, 1993.

TABLE 1. Characteristics of Compounds (1) and (2)

Com- pound	Yield, %	mp, °C	Empirical formula	Solvent for crystallization
1 a	52	238-239	C18H14O6	iso-PrOH
۱b	50	241-242	C19H16O6	EtOH
1 c	45.7	254-255	C20H18O6	СН3СООН
1d	77	264-256	C18H13CIO6	DMFA/iso-PrOH
1 e	35.1	241-242	C19H16O7	iso-PrOH
١f	52.1	246—247	C18H13FO6	iso-PrOH
1 g	55	>300	C18H13NO8	CH3COOH
۱h	54.4	247-248	C19H16O6	iso-PrOH
1 i	53	240-241	C18H12Cl2O6	DMFA/iso-PrOH
2d	20.8	261-262	C18H15ClO7	iso-PrOH
2 h	18.4	240-241	C19H18O7	iso-PrOH

TABLE 2. Characteristics of the 6-Carboxy-1,3-benzodioxane Flavanone Analogs (3)

Com- pound	Yield, %	mp, °C	Empirical formula	Solvent for crystallization
3c	23.7*, 43**	226-227	C20H18O6	iso-PrOH/CH3COCH3
3e	12.6*, 44.5**	226-227	C19H16O7	iso-PrOH
3f	9.8*, 51**	227-228	C18H13FO6	EtOF
3h	6.6*. 38.9**	241-242	C19H16O6	iso-PrOH

*Yield on heating the reaction mixture for 1 h.

**Yield on heating the reaction mixture for 2 h.

TABLE	3.	Characteristics	of	the	6-Carboxy-1,3-benzo-
dioxane	Flav	one Analogs (4))		

Com- pound	Yield, %	mp, °C	Empirical formula	Solvent for crystallization
4a	58.8	>300	C18H12O6	iso-PrOH
4b	71.8	>300	C19H14O6	DMFA
4 c	55.6	>300	C20H16O6	DMFA/iso-PrOH
4d	64.3	240-241	C18H11ClO6	СНЗСООН
4e	53.8	>300	C19H14O7	DMFA
4f	58.5	239-240	C18H11FO6	СН3СООН
4g	46.5	>300	C18H11NO8	СНЗСООН
4h	54	248-249	C19H14O6	СНЗСООН

It must be mentioned that the use of this method leads to the formation not only of the desired chalcones (1a-i) but also of their structural isomers — the flavanones (3c, e, f, h) and also, as by-products, the β -hydroxydihydrochalcones (2h, d). We found that the yields of flavanones (3) depended on the time of heating and increased appreciably when when the reaction mixture was held for two hours or more. It is in just this way that we obtained flavanones (3c, e, f, h), which are silandrin analogs. The mixtures of chalcones (1c-h), β -hydroxydihydrochalcones (2d, h) and flavanones (3c, e, f, h) were separated by fractional crystallization from isopropanol.

The action of dimethyl sulfoxide in the presence of catalytic amounts of iodine on the chalcones (1) was accompanied by their oxidative cyclization into the corresponding hydnocarpin analogs, the flavones (4a-e, g, h).

The 6-carboxy-1,3-benzodioxane chalcone analogs (1) were yellow or light yellow crystalline substances with high melting points (Table 1) sparingly soluble in many organic solvents. In contrast to the chalcones, the flavanones (3) and the flavones (4), also possessing high melting points (Tables 2 and 3), were colorless crystalline substances readily soluble in many organic solvents.

All these compounds (1-4) were capable of forming salts through their carboxy groups. As an example, we obtained the monoethanolamine salt of 2-(6-carboxy-1,3-benzodioxan-8-yl)-6-chlorochromone (5) with a yield of 86%, which was readily soluble in water.

Com-			Protons of the phenolic moiety	henolic moiet	γ			Benzoo	Benzodioxane protons	ons	-
punod	011-2, S	R-3	R ¹ -4	R ¹ -5	9-H	COCH=CH, s	H-5, d, J=2.0 Hz,	H-7, d, J=2.0 Hz.	COOH-6, s	CH2-2, s	(112-4, s
la	12.34	7.0 m	7.55 t.d, (9.0; 3.0)	7.0 m	8.22 d.d. (9.0; 3.0)	8.04	7.75	8.38	12.94	5.48	4.98
41	12.60	6.80 d, (3.0)	2.33 s	6.80 d.d, (9.0; 3.0)	8.17 d. (9.0)	8.03	7.75	8.39	12.93	5.47	4.97
10	12.44	6.82 S	2.25 S	2.25 s	8.05 S	8.05	7.78	8.39	12.98	5.49	4.99
PI	12.12	7.02 d, (8.3)	7.54 d.d. (8.3; 2.5)	ł	8.18 d, (2.5)	8.00	7.76	8.32	12.92	5.47	4.98
le	12.96	6.51 d. (2.2)	3.84 s	6.54 d.d, (8.3; 2.2)	8.29 d, (8.3)	8.04	7.76	8.32	13.34	5.49	4.99
ΙĮ	12.01	7.02 d.d. (9.0; 3.0)	7.44 t.d.	I	8.06 d.d	8.03	7.78	8.41	12.96	5.47	4.98
18	12.88	7.16 d. (9.0)	8.33 d.d. (9.0:3.0)		8.69 d. (3.0)	7.94	77.T	8.30	12.98	5.47	4.98
1h	12.19	6.89 d, (9.0)	7.38 d.d. (9.0:3.0)	2.32 s	8.04 d, (3.0)	8.04	TT.T	8.38	12.96	5.48	4.98
li	13.04		7.91 d, (2.0)	į	8.45 d, (2.0)	8.11	7.79	8.50	13.04	5.48	4.98

alcone Analogs
le Ch
3-benzodioxan
-
-Carboxy-
Ó
the
of
Hz) (
J,
: tudd
Ś
(DMSO-d ₆ ;
PMR Spectra
<u> </u>
TABLE 4. PMR S ₁

			Chro	Chromanone protons	Suc				Benz	Benzodioxane protons	tons	
punod	lla-2. d.d		He-3, d.d	H-5	R ² -6	к ¹ -7	R-8	11-5, d (2.0)		H-7, a COOH-6, CH2-2, s (2.0) s	CI12-2, s	CH2-4, s
30	5.69 (12.2; 3.42)	-	2.76 (16.6; 3.42)	7.54 S	2.22 S	2.22 s	6.96 S	7.72	i i	12.83	5.39	4.98
3	5.76 (12.9; 3.3)	-	2.73 (17.0; 3.3)		6.69 d.d. (8.5:2.0)	3.82 s	6.69 d. (2.0)	7.72	8.06	12.80	5.40	4.98
f	5.80 (13.2; 2.9)	3.26 (16.6; 13.2)	2.82 (16.6; 2.9)	7.21 d.d. (10; 4.3)		7.47 d.d, (10; 3.3)	7.47 d. (8.0)	7.73	8.05	12.87	5.39	4.98
ų	5.73 (12.8; 3.4)	5.73 3.06 (12.8; 3.4) (16.6; 12.8)	2.77 (16.6; 3.4)	7.58 d. (2.2)	2.28 s	7.41 d.d. (8.2; 2)	7.03 d. (8.2)	7.70	8.04	12.87	5.38	4.97

Analogs	
Flavanone	
3-benzodioxane	
e 6-Carboxy-1,	
Hz) of the	
om; J, l	
(DMSO-d ₆ ; δ, pj	
Spectra	
FABLE 5. PMR 5	

s
ð
al
ğ
◄
ø
E
5
3
E
e)
ğ
3
6
÷
ō
2
ē
م
Ś
Ļ,
5
×
2
t
يع.
Ŷ
Ó
Ð
문
Ē
ō
Hz) of th
7
ب ر
••
Ξ
ġ.
щ
ŵ
• •
J,
ĭ
Ö
\mathbf{S}
Σ
(DMSO
\sim
3
킁
õ
2
~
Σ
2
TABLE 6.
Ц
Ľ
g
-
\sim
TABLE 6. PMR Spe

Com-		C	Chromone protons	ns			Ben	Benzodioxane protons	otons	
puno	11-3, S	H-5	R ² -6	R ¹ -7	R-8	H-5, d	11-7, d	COOII-6, CH2-2, S	CH2-2, S	CH2-4, S
4.a	6.90	8.05 d.d	7.85 m	7.53 t.d.	7.85 d.d	7.88 (2.0)	8.39 (2.0)	13.00	5.54	5.08
4b	6.91	7.91 d, (9.0)	7.30 d.d. (9.0; 2.5)	2.47 S	7.54 d. (2.5)	7.84 (2.0) 8.32 (2.0)	8.32 (2.0)	12.93	5.47	5.01
40	6.86	8.28 s	2.32 S	2.36 s	7.82 S	7.74 (2.0)	7.74 (2.0) 8.49 (2.0)	12.98	5.47	5.01
4 d	6.98	7.89 d, (9.0)	1	7.82 m	7.82 m	7.90 (2.0)	7.90 (2.0) 8.30 (2.0)	13.04	5.50	5.02
4e	6.85	7.96 d. (9.0)	7.06 d.d. (9.0; 2.5)	3.93 s	7.19 d. (2.5) 7.84 (2.0) 8.32 (2.0)	7.84 (2.0)	8.32 (2.0)	13.00	5.49	5.03
4 8	7.06	8.65 d, (2.0)	İ	8.54 d.d . (9; 3.0)	7.99 d, (9.0) 7.83 (2.0)	7.83 (2.0)	8.32 (2.0)	12.90	5.51	5.01
4h	6.94	7.82 d. (9.0)	2.43 s	7.64 m	7.64 m	7.86 (2.0)	7.86 (2.0) 8.32 (2.0)	13.00	5.50	5.04

The compositions and structures of compounds (1-4) were shown by the results of elemental analysis (Tables 1-3) and PMR spectra (Tables 4-6).

The PMR spectra (in DMSO-d₆) of the chalcones (1) (Table 4) showed the signals of the carboxy and hydroxy protons in the weakest field (12.9-13.0 ppm and 12.0-13.0 ppm, respectively). The methyl protons of the chalcones in solution in DMSO-d₆, in contrast to solution in CDCl₃, gave signals not in the form of doublets but as two-proton singlets. The H-5 and H-7 aromatic protons of the 1,3-benzodioxane ring were revealed in the form of doublets with a SSCC of 2.0 Hz in the 7.7-8.0 ppm region, while the signals of the CH₂-2 and CH₂-4 methylene groups had the form of two-proton singlets at 5.5 and 5.0 ppm.

In the PMR spectra of the β -hydroxydihydrochalcones (2h, d) the protons of the β -methyl groups gave quintets at 4.2 ppm and the protons of the α -methylene groups doublets at 3.50 ppm.

The PMR spectra of the flavanones (3) (Table 5) had characteristic signals of the pyran ring, with chemical shifts in the 5.8 and 3.0 ppm regions. The values of the SSCC ($J_{H-2a,3a} = 12.8 \text{ Hz}$; $J_{H-2a,3e} = 3.4 \text{ Hz}$; $J_{H-3a,3e} = 16.6 \text{ Hz}$) showed that the H-2_a proton was oriented axially and the 1,3-benzodioxane residue on the same carbon atom, equatorially.

In the PMR spectra of the flavones (4) in DMSO-d₆ (Table 6), in addition to the signals of H-3 and H-5 of the chromone nucleus located in the 6.9-7.0 and 7.9-8.3 ppm regions, respectively, the signals of the H-5 and H-7 protons of the benzodioxane nucleus (7.7 and 8.3 ppm, respectively) were characteristic.

Thus, a method has been found for obtaining 6-carboxy-1,3-benzodioxane analogs of chalcones and their structural isomers — flavanone analogs of silandrin. It has been shown that in the synthesis of these compounds it is possible to obtain and isolate intermediate compounds — β -hydroxydihydrochalcones — as by-products of the reaction. Syntheses have been performed which show the possibility of converting carboxyl-containing chalcones into flavone analogs of hydrocarpin.

The testing of the biological activities of the new compounds has shown that some of them exhibit a hepatoprotective activity.

EXPERIMENTAL

The purity of the compounds obtained was checked by the TLC method on Silufol UV-254 plates using the chlorofom-methanol (9:1) system. PMR spectra were measured on a Bruker WP-100 SU instrument in DMSO-d₆ with TMS as internal standard. The results of analyses of the compounds synthesized corresponded to the calculated values.

 $3-(6-Carboxy-1,3-benzodioxan-8-yl)-1-(2-hydroxyphenyl)propen-1-ones (1a-i), <math>3-(6-Carboxy-1,3-benzodioxan-8-yl)-1-(2-hydroxyphenyl)-\beta-hydroxypropan-1-ones (2h, d), and <math>3-(6-Carboxy-1,3-benzodioxan-8-yl)-1-(2-hydroxyphenyl)$ chromanones (3c, e, f, h). A solution of 20 mmole of the appropriate acetophenone and 4.16 g (20 mmole) of 6-carboxy-8formyl-1,3-benzodioxane in 54 ml of dimethylformamide was treated with 9.1 g of finely ground caustic potash, and the mixture was boiled with stirring for 1-2 h. A suspension of the resulting precipitate in water was neutralized with hydrochloric acid, and the solid matter was then filtered off and was boiled in isopropanol. The insoluble part (chalcone) was separated off, and products (2) and (3) were obtained in the individual form from the mother liquor by fractional crystallization from isopropanol.

PMR spectrum (δ , ppm): compound (2d) 11.54 (s, 1H, OH-2), 7.51 (d 1H, J = 9 Hz, H-3), 7.51 (d.d, 1H, J = 9.0; 3.0 Hz, H-4), 7.85 (d, 1H, J = 3.0 Hz, H-6); 3.50 (d, 2H, CH₂- α), 4.16 (q, 1H, CH- β); protons of 6-carboxy-1,3-benzo-dioxane: 7.51 (d, 1H, J = 2.0 Hz, H-5), 12.80 (s, 1H, COOH-6), 7.77 (d, 1H, J = 2.0 Hz H-7), 5.28 (s, 2H, CH₂-2), 4.90 (s, 2H, CH₂-4).

Compound (2h) 11.57 (s, 1H, OH-2), 6.83 (d, 1H, J = 9.0 Hz, H-3), 7.31 (d.d, 1H, J = 9.0; 3.0 Hz, H-4), 2.25 (s, 3H, CH₃-5), 7.71 (d, 1H, J = 3.0 Hz, H-6); 3.51 (d, 2H, CH₂- α), 4.19 (q, 1H, CH- β); protons of 6-carboxy-1,3-benzodioxane: (s, 1H, COOH-6), 7.78 (Hz, 1H, J = 2.0 Hz, H-7), 5.27 (s, 2H, CH₂-2), 4.89 (s, 2H CH₂-4).

2-(6-Carboxy-1,3-dioxan-8-yl)chromones (4a-e, f, g, h). A catalytic amount of iodine was added to a solution of 10 mmole of the appropriate chalcone (1) in 30 ml of dimethyl sulfoxide, and the reaction mixture was boiled for 1 h. Then it

was diluted twofold with water and the precipitate that deposited was filtered off and was washed on the filter with a 20% solution of sodium thiosulfate to eliminate traces of iodine. The reaction product was crystallized from a suitable solvent.

Monoethanolamine Salt of 2-(6-Carboxy-1,3-benzodioxan-8-yl)-6-chlorochromone (5). With stirring, 0.33 g (0.32 ml) of monoethanolamine was added to a paste of 1.95 g (5.43 mmole) of chromone (4d) in 1.3 ml of water heated to 70-75°C, and heating at 70-75°C was continued until all the paste had passed into solution. Then 10.1 ml of isopropyl alcohol was added, and the mixture was left in the refrigerator; the resulting precipitate was filtered off and was washed with cold isopropyl alcohol. It was recrystallized from isopropyl alcohol. Yield 1.95 g (85.9%), mp 200-201°C. Empirical formula $C_{20}H_{18}CINO_7$.

REFERENCES

- 1. A. Aitmambetov and V. P. Khilya, Khim. Prir. Soedin., 480 (1994) [in this issue].
- 2. A. Aitmambetov and V. P. Khilya, Khim. Prir. Soedin., 669 (1993).
- 3. V. P. Khilya, D. [Gy.] Litkei, T. Patonai [Patonay], L. G. Grishko, A. M. Kornilov, and A. Aitmambetov, Khim. Geterotsikl. Soedin., No. 3, 319 (1989).
- 4. V. P. Khilya, A. Aitmambetov, A. V. Turov, M. Yu. Kornilov, D. [Gy.] Litkei, and T. Patonai [Patonay], Khim. Geterotsikl. Soedin, No. 2, 192 (1986).
- 5. V. P. Khilya. Kh. Al' Budi, A. Aimambetov, L. G. Grishko, A. V. Turov, D. M. Zakharik, and D. Likei, Khim. Geterotsikl. Soedin, No. 7, 879 (1992).
- 6. A. G. Doshi and B. J. Ghiya, Curr. Sci., 55, No. 10, 502 (1986).