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Abstract-Reaction of Li+[($-C,H,)Re(NO)(PPh,)l- with Ph3GeC1 and Ph2GeC12 (THF, 
-75°C) gives germyl complexes ($-CsHS)Re(NO)(PPh3)(GePh3) (84%) and (q5-CsHs) 
Re@JO)(PPh&GePh2Cl) (3, 82%), respectively. Reaction of 3 and (CH3)3SiOTf 
gives (r$-C5H,)Re(NO)(PPh3)(GePh20Tf) (4, 82%). Several properties show the triflate 
substituent in 4 to be extremely labile. First, reaction of 4 and pyridine to give 
[(~5-C5H5)Re(NO)(PPh3)(GePh2NC5H5)]+TfO- (5) is complete in c 5 min at -78°C; 
the pyridine in 5 rapidly exchanges with pyridine-d5 (CD2C12, -80°C). Second, the 
13C NMR resonances of the diastereotopic germanium phenyl substituents in 4 coalesce 
upon warming (AG& (CD2C12) = 12.6kO.2 kcal mol- ‘). The most likely mechanisms 
for this dynamic behaviour entail initial triflate dissociation to give the germylene complex 
[(q’-C5H5)Re(NO)(PPh3)(=GePh2)]‘TfO-. 

Metal complexes of unsaturated silicon, 
germanium, tin and lead containing ligands have 
been the focus of much recent attention. l-2 We have 
previously demonstrated the ready availability of 
cationic chiral rhenium alkylidene complexes of the 
formula [(r$-C5H5)Re(NO)(PPh3)(=CHR)]+X-.3~4 
The rhenium fragment (q 5-C 5H 5)Re(NO) 
(PPh,)+ is a powerful R donor by virtue of the 
high-lying d orbital HOMO shown in I below 
(Scheme 1),3d and hence these alkylidene complexes 
exhibit some of the highest MS double bond 
rotational barriers known (18-21 kcal mol- ‘).3a*qd 
Thus, we sought to probe the accessibility of 
analogous germylene complexes, [(~I’-C,H~)R~(NO) 
(PPh,)(=GeR,)]+X-. Neutral germylene com- 
plexes with bulky germanium substituents have 
been previously synthesized, ’ but cationic 
germylene complexes remain to our knowledge un- 

* Author to whom correspomIence should be addressed. 
7 Reaction conditions, work-up procedures and prod- 

uct spectroscopic properties are similar to those recently 
described for related silyl complexes. 6 

known. In this communication, we report the 
synthesis of functionalized germyl complexes (q’- 
C,H,)Re(NO)(PPh,)(GeR,X), and dynamic NMR 
data that suggest facile equilibria with the cor- 
responding germylene complexes. 

The rhenium anion Li+[(q’-C5H5)Re(NO) 
PPh,)]- (1) was generated in THF as previously 
described’ and treated with germyl chloride 
Ph,GeCl (1.5 equiv.) at - 75°C (Scheme 1). Work- 
up gave the triphenylgermyl complex ($-C5H5) 
Re(NO)(PPh,)(GePh,) (2) in 84% yield.7 Next, 
anion 1 was similarly treated with dichloride 
Ph2GeC12. The functionalized germyl complex 
(q’-C,H,)Re(NO)(PPh,)(GePh,Cl) (3) was iso- 
lated in 82% yield after work-up. Complex 3 and 
(CH3)3SiOTf2” were in turn reacted in CH2C12. 
Work-up gave the germyl complex (q5-C5H5) 
Re(NO)(PPh3)(GePh20Tf) (4) in 82% yield. 

Several observations indicated the tritlate sub- 
stituent in germyl complex 4 to be extremely labile. 
First, addition of pyridine (2.0 equiv.) to 4 gave the 
pylidinillm salt, [(rl ‘-CsH ,)Re(NO)(PPh,) 
(GePh2NC5H5)]+ TfC- (5) in 83% yield after 
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Scheme 1. Synthesis of functionalized germyl complexes. 

work-up. We sought to determine the rate law for 
this transformation, and specifically the order 
in pyridine. However, reaction was complete in < 5 
min at - 78”C, as assayed by 3’P NMR monitoring. 
Similarly, pyridinium salt 5 (0.02 M in CD&l,) was 
treated with 2.5 equiv. of pyridine-d, at -80°C. 
Equilibration with 5-d5 was complete in < 5 min. 

Germyl complexes 2-5 were characterized by 
microanalysis and by IR, and ‘H, 13C and 31P NMR 
spectroscopy, as described in supplementary 
material furnished to the reviewers.* IR v(CF,S03) 
(KBr, cm-‘, s) were noted for 4 (1331, 1234, 1200) 
and 5 (1271, 1224,1150,1045). The high frequency 
band of 5 was in a typical range for ionic triflates 
(128&1270 cm- I), whereas that of 4 was outside 
the typical range for covalent trillates (1395-1365 
cm- I).’ 

Importantly, germyl complexes 3 and 5 exhibited 
separate 13C NMR resonances for the diastereo- 
topic germanium-phenyl substituents in CD$& 
at room temperature (two o, m, p, ipso). How- 
ever, triflate-substituted complex 4 showed dyna- 
mic behaviour. At lower temperatures, separate 
phenyl carbon resonances were observed as with 
3 and 5. However, these coalesced to a single 
set of resonances upon warming. The coalescence 
temperatures were determined from spectra rec- 
orded in 5°C increments, and differed for each type 
of carbon. Standard treatment of the data for the 

* See footnote t on previous page. 

ipso carbons gave AGfs8k (CD&lJ = 12.6kO.2 
kcal mol- ’ for the process equivalencing the phenyl 
groups. ‘*’ The AGt siflcantly increased in the less 
polar solvent chlorobenzene (AGjz3k(C6D5C1) = 
15.3 & 0.2 kcal mol- I). 

What is the mechanism by which the dias- 
tereotopic phenyl groups of 4 are equivalenced? One 
possibility is to invoke the inversion of con- 
figuration at rhenium. However, analogous rhe- 
nium alkyl, phosphido, bromo and iodo complexes 
show good configurational stability.“g*‘O Hence, we 
conclude that a net inversion of cotiguration at 
germanium must occur. Accordingly, the most 
probable inversion mechanisms entail triflate anion 
dissociation to give the germylene complex, 
[($-C,H,)Re(NO)(PPh,)(=GePh#TfO- (6), as 
shown in Scheme 2. ” The Re=Ge conformation 
of 6 depicted is analogous to Re=C conformations 
found in corresponding alkylidene complexes. 3 Dis- 
sociation would be followed by either (1) Re=Ge 
bond rotation, and addition of triflate anion to the 
Re=Ge face anti to PPh3, or (2) addition of the 
triflate anion to the Re=Ge face syn to PPh3, and 
Re-Ge bond rotation (Scheme 2). Both mech- 
anisms interconvert the diastereotopic phenyl 
groups, and account for the solvent polarity trend 
noted above. However, since nucleophiles pre- 
ferentially attack the corresponding alkylidene 
complexes on the Re=C face anti to the bulky PPh3 
ligand,3 we view the first possibility as more likely. 

Importantly, the AGjh8k (CD2C12) of 12.6 kcal 
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Scheme 2. Possible mechanisms for the equivalencing of diastereotopic phenyl groups Ph, and 
Ph, in germyl complex 4. 

mol- ’ for the equivalencing of the diastereotopic 
phenyl groups of germyl complex 4 constitutes the 
maximum AG that can separate 4 from germylene 
complex 6 at 268 K. Since the Re=Ge bond 
rotational barrier could well contribute to this AGf, 
the actual AG between 4 and 6 may be much less. 
Hence, appropriate structural variants of 4 have a 
good chance of being thermodynamically unstable 
with respect to a germylene complex. Experiments 
designed to probe this possibility are in progress. 
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