Synthesis of Phenyl [(R)¹⁶O,¹⁷O,¹⁸O]Sulphate and the Stereochemical Course of a Sulphuryl Transfer Reaction

Christina L. L. Chai, Timothy W. Hepburn and Gordon Lowe*

The Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY, UK

Phenyl [$(R)^{16}O,^{17}O,^{18}O$] sulphate is synthesised and the stereochemical course of sulphuryl transfer to a secondary alcohol shown to proceed with inversion of configuration at sulphur.

In order to study the stereochemical course of chemical and enzyme catalysed sulphuryl transfer reactions, a general strategy for the synthesis of chiral [16O,17O,18O]sulphate monoesters has been developed.^{1,2} A chirally labelled aryl sulphate was now required to further these investigations. A preliminary search for a chiral alcohol that would form a crystalline sulphite diester with phenol and thionyl chloride, and would not be susceptible to oxidation by ruthenium tetroxide led us to select 3β-cholestanol and epiandrosterone. Both of these steroidal alcohols form phenyl sterol sulphite diesters when one molar equivalent of phenol and 3\beta-cholestanol or epiandrosterone is reacted successively with thionyl chloride in the presence of pyridine. A single diastereoisomer of phenyl epiandrosterone sulphite diester crystallised readily and is shown to have the (R_S) -configuration 1, by X-ray crystal structure analysis.3 With this knowledge $[(R)^{16}O, ^{17}O, ^{18}O]$ sulphate was synthesised by the route outlined in Scheme 1.

[18O]Thionyl chloride was prepared from sulphur [18O₂]dioxide (99 atom% 18O) and 1,4-bis(trichloromethyl)benzene in the presence of a catalytic amount of iron(III) chloride in a sealed tube at 20 °C for 3 days: the [180]thionyl chloride (83%) was purified by fractional distillation.⁴ One equivalent of phenol in benzene solution was added slowly to a stirred solution of the [18O]thionyl chloride in benzene in the presence of pyridine and this was allowed to react for 1 h. Epiandrosterone (1 equiv.) in benzene solution was then added and the reaction mixture stirred for 15 min. The [18O]sulphite diester 2 was obtained (43%) after flash chromatography on silica gel,5 and was recrystallised from ether-hexane prior to oxidation. The [18O]sulphite diester 2 was oxidised to the corresponding [17O,18O] sulphate diester 3 using a modification of our previously described method for the oxidation of sulphites to labelled sulphates.⁶ The [18O]sulphite 2 is an aryl sulphite diester, unlike the previously studied sulphites diesters, 1,2,6 and is not stable under the aqueous conditions of the catalytic oxidation method.⁶ Ruthenium tetroxide was prepared, therefore, from ruthenium dioxide dihydrate (200 mg, 1.18 mmol) and sodium metaperiodate (600 mg, 2.8 mmol) in a vigorously stirred, biphasic system consisting of CCl₄ (25 ml) and water (5 ml); the organic layer containing the ruthenium tetroxide was dried (over Na₂SO₄) and [170]water (45.0% 170, 20.2% 160, 34.8% 180, 0.5 ml) containing anhydrous Na₂HPO₄ (10 mg) added and isotope exchange allowed to occur by vigorously stirring the mixture for 24 h.† The ruthenium [17O₄]tetroxide solution was dried and used (in a slightly greater than stoichiometric amount) to oxidise the [18O]sulphite diester 2 at 0 °C (reaction time 10 min) to phenyl epiandrosterone [17O,18O]sulphate 3 in 76% yield.

Having previously established the configuration at sulphur of the unlabelled sulphite diester 1 and knowing that the oxidation of sulphites to sulphates with ruthenium tetroxide

Scheme 1 Synthesis of phenyl $[(R)^{16}O, ^{17}O, ^{18}O]$ sulphate. $\Phi = ^{17}O;$ $\Phi = ^{18}O.$

Scheme 2 The stereochemical course of a sulphuryl transfer reaction. The product 6, after debenzoylation and cyclization was analysed by FTIR spectroscopy (see Fig. 1). $\Box = {}^{17}\text{O}$; $\blacksquare = {}^{18}\text{O}$.

[†] Basic conditions have been found to catalyse the exchange of oxygen isotopes into RuO₄. Preliminary studies were performed under similar conditions using 99% [¹⁸O]H₂O. The resulting ruthenium [¹⁸O₄]tetroxide reacted with racemic cis-4-methyl-2-oxo-1,3,2-dioxathiane to give the corresponding 4-methyl-2,2-[¹⁸O]dioxo-1,3,2-dioxathiane in very high enrichment (by FTIR), indicating that isotope exchange had reached equilibrium.

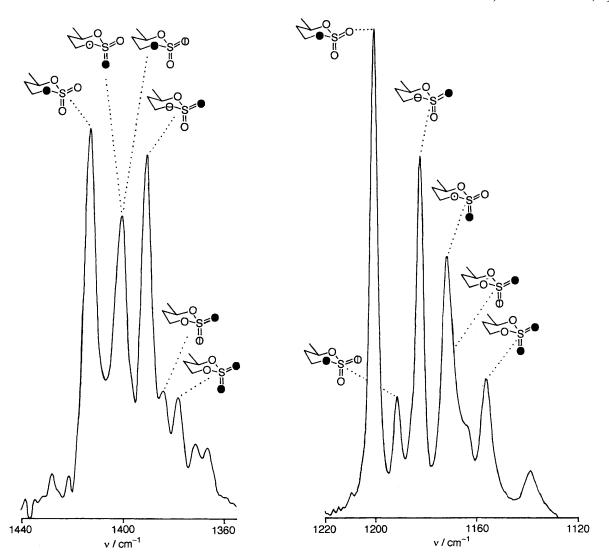


Fig. 1 The FTIR spectrum showing the antisymmetric (1414–1378 cm⁻¹) and symmetric (1201–1157 cm⁻¹) >SO₂ stretching frequencies of the mixture of isotopomers derived by cyclizing (1*R*)-3-hydroxy-1-methylpropyl [^{16}O , ^{17}O , ^{18}O]sulphate 7 with sulphuryl chloride. The resolution was enhanced by Fourier deconvolution; for the antisymmetric stretching region a linewidth of 20 cm⁻¹ and an enhancement factor of 2.0 was used, whereas for the symmetric stretching region a linewidth of 10 cm⁻¹ and an enhancement factor of 1.5 was used. Isotopes in a bridging position do not influence the > SO₂ stretching frequencies. 2 \bigcirc = ^{18}O ; \bigcirc = ^{18}O ; \bigcirc = ^{18}O ; \bigcirc = ^{16}O , ^{17}O and ^{18}O .

occurs with retention of configuration,⁶ the [^{17}O , ^{18}O]sulphate diester 3 must have the (R_S)-configuration as shown. Phenyl epiandrosterone [(R) ^{17}O , ^{18}O]sulphate diester 3 on treatment with tetrabutylammonium azide⁷ in CH₂Cl₂ at room temperature for 18 h was converted to phenyl [(R) ^{16}O , ^{17}O , ^{18}O]sulphate tetrabutylammonium salt 4 in 45% yield after purification on Sephadex G-10.

Phenyl $[(R)^{16}O, ^{17}O, ^{18}O]$ sulphate tetrabutylammonium salt 4 was incubated with (1R)-3-benzoyloxy-1-methylpropan-1-ol 5,8 in carbon tetrachloride at 100 °C for 16 h (in a reacti-vial) by which time sulphuryl transfer was essentially complete. The (1R)-3-benzoyloxy-1-methylpropyl $[^{16}O, ^{17}O, ^{18}O]$ sulphate 6 was debenzoylated with aqueous sodium hydroxide solution and the (1R)-3-hydroxy-1-methylpropyl $[^{16}O, ^{17}O, ^{18}O]$ sulphate 7 as its pyridinium salt cyclized with sulphuryl chloride. The mixture of isotopomers so generated was investigated by FTIR; the spectrum of the symmetric and antisymmetric stretching frequences are shown in Fig. 1. The distribution of isotopomers is that expected from the S_S enantiomer

of (1R)-3-hydroxy-1-methylpropyl [16O,17O,18O]sulphate,2‡ indicating that the sulphuryl transfer reaction has proceeded with inversion of configuration at sulphur.

Phenyl [^{16}O , ^{17}O , ^{18}O]sulphate was also prepared by way of the crystalline diastereoisomer of phenyl 3β -cholestanol [^{18}O]sulphite. Although an X-ray crystallographic structural analysis of the unlabelled phenyl 3β -cholestanol sulphite was not performed, the phenyl [^{16}O , ^{17}O , ^{18}O]sulphate was shown to have the same configuration as the phenyl [$(R)^{16}O$, ^{17}O , ^{18}O]sulphate obtained from phenyl epiandrosterone [^{17}O , ^{18}O]sulphate 3, by transfer of the labelled sulphuryl group to (^{1}R)-3-benzoyloxy-1-methylpropan-1-ol (vide supra), followed by alkaline hydrolysis, cyclization with

 $[\]ddagger$ The '¹¹O-water' used for the preparation of the ruthenium [¹¹O₄]tetroxide contained 45% ¹¹O, 20.2% ¹6O and 34.8% ¹8O so where sites are shown as ¹¹O it should be realised that a fraction of those sites will contain ¹6O and ¹8O.

sulphuryl chloride and FTIR analysis.2 Hence the phenyl 3β -cholestanol sulphite must also have the (R_S) -configuration.

The authors gratefully acknowledge support for this work from the SERC and for a Violette and Samuel Glasstone Research Fellowship (to C. L. L. C.).

Received, 15th July 1991; Com. 1/03589D

References

1 G. Lowe and S. J. Salamone, J. Chem. Soc., Chem. Commun., 1984, 466.

- 2 G. Lowe and M. J. Parratt, J. Chem. Soc., Chem. Commun., 1985, 1075; G. Lowe and M. J. Parratt, Bioorg. Chem., 1988, 16, 283.
- 3 C. L. L. Chai, V. Humphreys, K. Prout and G. Lowe, J. Chem. Soc., Chem. Commun., in the press.
 4 T. W. Hepburn and G. Lowe, J. Labelled Cmpd. Radiopharm.,
- 1990, **28**, 617.
- 5 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.
- 6 G. Lowe and S. J. Salamone, J. Chem. Soc., Chem. Commun., 1983, 1392.
- 7 A. Brandstrom, B. Lamm and I. Palmertz, Acta Chem. Scand., Sect. B., 1974, 28, 699.
- 8 Prepared from (R)-butane-1,3-diol, $[\alpha]_D^{21} 31^\circ$ (c 1, EtOH) by the method of S. Kim, H. Chang and W. J. Kim, J. Org. Chem., 1985,