DIPOLE MOMENTS OF SOME SUBSTITUTED CYCLOHEXANONES

M. Balasubramanian* and A. D'Souza
Department of Chemistry, Annamalaj University, Annamalainagar, India

(Received in the UK 1 January 1969; Accepted for publication 27 Jamuary 1969)

Abstract

The electric dipole moments of some aryl substituted cyclohexanones have been measured in benzene solution at 30°. From the data on 3 -(p-bromophenyl)cyclohexanone, a free energy change of $-1.4 \mathrm{kcal} / \mathrm{mole}$ at 30° has been obtained for moving an axial aryl group to the equatorial position. The measurements indicate that 3,3,5-trimethyl-5-phenylcyclohexanone and 5 -(p-bromophenyl)-3,3,5-trimethylcyclohexanone exist in non-chair conformations.

Determination of dipole moments is a valuable method for establishing the geometry and conformation of molecules. The presence of a highly polar group in cyclohexanones makes dipole moment measurements a convenient method for studying their conformation. Mention can be made of studies on 2-bromocyclohexanone, ${ }^{1,2}$ cyclohexane-1,4-dione, ${ }^{3,4}$ 4,4-dimethylandrostan-3,17-dione and 2,2-dimethylandro-stan-3,17-dione. ${ }^{5}$ As a continuation of our work on phenyl-substituted cyclohexane derivatives, ${ }^{6,7}$ the electric dipole moment of a number of substituted cyclohexanones were measured and the results are presented below.

Dipole moments

The dielectric constants $\left(\varepsilon_{12}\right)$ and densities $\left(d_{12}\right)$ of dilute benzene solutions were measured at 30° and the empirical constants α and β for each compound were calculated from the equations, ${ }^{8}$

$$
\begin{aligned}
& \varepsilon_{12}=\varepsilon_{1}\left(1+\alpha w_{2}\right) \\
& d_{12}=d_{1}\left(1+\beta w_{2}\right) .
\end{aligned}
$$

Where ε_{1}, and d_{1}, are the dielectric constant and density of the solvent respectively, and w_{2} is the weight fraction of the solute.

The molar polarization $\left(P_{2}\right)$ of the solute was calculated from the relation, ${ }^{8}$

$$
P_{2}=M_{2} \frac{\left(\varepsilon_{1}-1\right)(1-\beta)}{\left(\varepsilon_{1}+2\right) d_{1}}+\frac{3 M_{2} \alpha \varepsilon_{1}}{d_{1}\left(\varepsilon_{1}+2\right)^{2}},
$$

where M_{2} is the molecular weight of the solute. The dipole moment μ was calculated from

$$
\mu=0.01281\left[\left(P_{2}-R_{\mathrm{D}}\right) \mathrm{T}\right]^{\ddagger}
$$

R_{D} is the molar refraction of the solute for the sodium D line and T the absolute temperature. The results are summarized in Table 1.

[^0]Table 1. Polarization data at 30°

No.	Compound	α	- β	$\begin{gathered} \mathbf{P}_{2} \\ (\mathrm{ml}) \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{D}} \\ \mathrm{cml} \end{gathered}$	$\underset{(\mathrm{D})}{\mu}$
1	Cyclohexanone	9.73	0.099	2120	27.8	3.02
2	3-Phenylcyclohexanone	$5 \cdot 20$	0.208	220.9	52.1	2.90
3	Phenylcyclohexane	0.278	0.075	59.6	52.0	0.62
4	3-p-Bromophenyl)cyclohexanone	$3 \cdot 17$	0.428	206.7	60.2	2.70
5	p-Bromophenylcyclohexane	1.94	0.311	147.7	61.4	2.07
6	3,3,5-Trimethylcyclohexanone	6.51	0.015	220.7	41.9	2.98
7	3,3,5-Trimethyl-5-phenylcyclo- hexanone	4.70	0.168	256.2	65.1	3.08
8	5-(p-Bromophenyl)-3,3,5-trimethylcyclohexanone	$5 \cdot 30$	0.378	365-0	707	3.82

DISCUSSION

From the data given in Table 1 the equilibrium constant K for chair-chair interconversion of 3-arylcyclohexanone and the free energy preference of the phenyl group for the equatorial position can be evaluated. The exact geometry of an ideal

chair form of cyclohexanone was calculated by Corey and Sneen. ${ }^{9}$ Using their data, the dipole angle between the carbonyl group and an axial or equatorial substituent at position 3 was calculated. From these angles and employing the experimentally determined dipole moments of cyclohexanone (3-02D) and phenylcyclohexane (0.62 D) as representing the moments of the carbonyl group and the phenyl group respectively, the dipole moments of conformations I and II were calculated. Similarly, the dipole moments of the two corresponding conformations of 3 -(p-bromophenyl)cyclohexanone were calculated making use of the measured dipole moment of p bromophenylcyclohexane (2.07D). The calculated values (μ) were obtained by substituting the dipole angle (θ) and the component bond moments (μ_{1} and μ_{2}) in the equation,

$$
\mu^{2}=\mu_{1}^{2}+\mu_{2}^{2}+2 \mu_{1} \mu_{2} \cos \theta
$$

The values are recorded in Table 2, below.
It can be seen that the experimentally determined values are very close to those calculated for the conformation II, which should preponderate in the equilibrium. The equilibrium constant K can be evaluated employing the equation,

$$
\mu^{2}=\mathbf{N}_{e} \mu_{e}^{2}+\mathbf{N}_{a} \mu_{a}^{2}
$$

Table 2

	2-Phenylcyclohexanone (D)	3-(p-bromophenyl)cyclohexanone (D)
μ_{ρ} Calculated with the aryl group axial $\left(\theta=60^{\circ}\right)$	$3 \cdot 30$	4.23
μ_{c} Calculated with the aryl group equatorial	2.73	$2 \cdot 50$
$\left(\theta=125^{\circ}\right)$	2.90	2.70

where μ is the observed dipole moment, μ_{e} is the calculated moment for the equatorial conformation and μ_{a} is that for the axial conformation and N_{e} and N_{a} (which is $1-N_{e}$) are the mole fractions of the respective conformations. Substitution of appropriate values in the equation gave K values of $2 \cdot 6$ for 3 -phenylcyclohexanone and $10-1$ for 3 -(p-bromopheny)cyclohexanone at 30°, corresponding to a free energy change of -0.58 and $-1.39 \mathrm{kcal} / \mathrm{mole}$ respectively. The large variation in the values of K and ΔG° for the two similar groups should be attributed to the closeness of the experimentally determined dipole moment with that calculated for the equatorial conformer. Furthermore, the value of $-0.59 \mathrm{kcal} / \mathrm{mole}$ obtained for 3 -phenylcyclohexanone is probably less accurate because of the low moment contributed by the phenyl group. Therefore, the value of $-1.39 \mathrm{kcal} / \mathrm{mole}$ obtained for 3 - p-bromophenyl)cyclohexanone may be considered as a more accurate value representing the free energy change for moving a phenyl group from the axial to the equatorial position in a 3 -substituted cyclohexanone.

The axial phenyl in 3-phenylcyclohexanone (III) is subjected to nonbonded interaction with only one axial hydrogen, whereas in phenylcyclohexane (IV) two

III

IV
axial hydrogen atoms are involved. Consequently, the free energy preference of the phenyl group for the equatorial position in 3-phenylcyclohexanone should be nearly half that in phenylcyclohexane. Indeed, the value of about $-1.4 \mathrm{kcal} /$ mole obtained for 3 (p-bromophenyl)cyclohexanone is half that of $-2.8 \mathrm{kcal} / \mathrm{mole}$ obtained for the phenyl group in cyclohexane from kinetic data. ${ }^{11}$ This value compares favourably with that of $-2.0 \mathrm{kcal} /$ mole at 25° reported ${ }^{12}$ on the basis of dipole moment data on 4-p-chlorophenyl-4-methylcyclohexanone.

The presence of two syn-axial methyl groups results in the distortion of the chair form of the cyclohexane ring. ${ }^{13}$ The stereochemical course of reduction of 3,35-trimethyl-5-phenylcyclohexanone (V) (with two syn-axial methyl groups) with
lithium aluminium hydride could be interpreted only on the basis of a twist conformation for the ring. ${ }^{7}$ In order to gain further information with regard to the conformation, the dipole moments of V and 5 -(p-bromophenyl)-3,3,5-trimethylcyclohexanone, were determined. The most likely chair conformation of these compounds is the one in which the aryl group is equatorial (VIIa). The inverted chair form (VIIb) should be excluded from consideration because of the severe Me-Ar syn-axial interaction.

$\mathrm{V} \mathrm{Ar}=\mathrm{Ph}$
VI $\mathrm{Ar}^{2}=\mathrm{p}-\mathrm{BrC}_{6} \mathrm{H}_{4}$

VIIa

VIIb

Assuming an ideal chair form, the dipole moment of the two conformations was calculated. The experimentally determined dipole moment of $3,3,5$-trimethylcyclohexanone was used as the moment of the carbonyl group. Table 3 lists the calculated and observed dipole moments.

Table 3. Obser ved and calculated dipole moments

μ	3,3,5-Trimethyl-5-phenyl- cyclohexanone (D)	5-(p-Bromophenyl)-3,3,5-tri- methylcyclohexanone (D)
Calc. for conformation VII a, $\theta=125^{\circ}$	2.67	2.47
Calc. for conformation VII b, $\theta=69^{\circ}$	3.26	4.19
Calc. for 'reversed' cyclohexanone:	2.60	2.24
Ar, Equatorial, $\theta=131^{\circ} 25^{\prime}$	3.40	4.57
Ar, Axial, $\theta=51^{\circ} 20^{\prime}$	3.08	3.82
Observed at 30°		

X-ray analysis of the crystal structure of 2,6-dibromo-3,3,5,5-tetramethylcyclohexanone and 2-bromo-3,3,5,5-tetramethylcyclohexanone showed that the cyclohexanone ring is highly distorted in these compounds. ${ }^{14}$ The experimentally determined atomic co-ordinates of these compounds agreed closely with those calculated for a "reversed" cyclohexanone, in which the angle at C_{4} is 120° and that at C_{1} is 109.5°. This angular strain was attributed to the rocking apart of the syn-axial methyl groups. Table 3 also gives the dipole moments calculated for a "reversed" cyclohexanone structure using the data given by Goaman and Grant. ${ }^{14}$ It is obvious from the data given in Table 3 that the experimentally determined dipole moments of 3,3,5-trimethyl-5-phenylcyclohexanone and 5 -p-bromophenyl-3,3,5-trimethylcyclohexanone do not agree with the moments calculated for either VIIa or VIIb or for the corresponding conformations with the angle at C_{1} and C_{4} reversed. Even though the experimentally determined dipole moments are intermediate between
those calculated for VIIa and VIIb, this cannot be attributed to an equilibrium between these two chairs because of the severe $\mathrm{Ar}-\mathrm{CH}_{3}$ axial interaction present in VIIb. Therefore, the two cyclohexanones should exist in a non-chair conformation. Either of the twist conformations VIIIa or VIIIb or an equilibrium between them could satisfy the observed dipole moments. The lack of data on the exact co-ordinates of these conformations preclude the calculation of their dipole moment. An examination of the scale models indicate that these are free from severe nonbonded steric interactions. The steric course of the hydride reduction of 3,3,5-trimethyl-5-phenylcyclohexanone was also satisfactorily accounted for by these conformations. ${ }^{7}$

VIIIa

VIIIb

EXPERIMENTAL

Materials

The cyclohexanones used were purified through their semicarbazones which were crystallized to constant m.p. and hydrolysed by treatment with aqueous oxalic acid. The liberated cyclohexanone was isolated and used after distillation or crystallization to constant m.p.

3-Phenylcyclohexanone. This was prepared as described ${ }^{7}$ by catalytic hydrogenation of 3-phenylcyclo-hex-2-en-1-one, b.p. $136-140^{\circ} / 6-7 \mathrm{~mm} ; n_{\mathrm{D}}^{30} 1.5399 ; d_{4}^{30} 1-049$. The semicarbazone had a m.p. of 168°.

Phenylcyclohexane. This was obtained by Wolff-Kishner reduction of 3-phenylcyclohexanone. A soln of the ketone (7 g), $\mathrm{KOH}(4.8 \mathrm{~g}$), hydrazine hydrate ($6 \mathrm{ml}, 90 \%$) in diethylene glycol (50 ml) was heated on a free flame (1 hr) and then allowed to distil slowly till the internal temp reached 185°. The upper layer of the distillate was transferred to the reaction flask and the reflux continued (5 hr). Isolation afforded the hydrocarbon as a colourless liquid (4 g) which after distilling over Na had b.p. $95^{\circ} / 10 \mathrm{~mm} ; n_{0}^{30} 1.5220$; $d_{4}^{30} 0.9390$. Lit. ${ }^{15}$ b.p. $107^{\circ} / 13 \mathrm{~mm}$.

3-(p-Bromophenyl)cyclohexanone. A filtered ethereal soln of p-bromophenylmagnesium bromide ${ }^{16}$ prepared from magnesium (7 g) and p-dibromobenzene (60 g) was mixed with cuprous chloride (0.5 g), stirred (1 hr) at 5° and treated with cyclohex-2-en-1-one ${ }^{17}(12 \mathrm{~g})$ in dry ether (60 ml). After stirring at room temp (5 hr) and refluxing (1 hr), isolation afforded a viscous liquid (11 g) boiling at $175-185^{\circ} / 12 \mathrm{~mm}$. Treatment of this with an aqueous ethanolic soln of semicarbazide hydrochloride and NaOAc afforded the semicarbazone of the cyclohexanone. After crystallization (EtOH) to constant m.p., it melted at 195-196 (yield, 8 g). (Found: $\mathrm{C}, 50-09 ; \mathrm{H}, 5 \cdot 42 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}$ requires: $\mathrm{C}, 50-31 ; \mathrm{H}, 5 \cdot 20 \%$).

Hydrolysis of the semicarbazone with aqueous oxalic acid ($20 \% 150 \mathrm{ml}$) afforded 3 -(p-bromophenyl)cyclohexanone as a colourless liquid (4.5 g), b.p. $180-181^{\circ} / 9 \mathrm{~mm} ; n_{\mathrm{D}}^{30} 1.5726 ; d_{4}^{30} 1.386$. (Found: C, 56.54; $\mathrm{H}, 5 \cdot 46 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}$ requires: C, $56 \cdot 94 ; \mathrm{H}, 5 \cdot 18 \%$).

The oxime crystallized from EtOH- $\mathrm{H}_{2} \mathrm{O}$ as colourless needles, m.p. 136-137 ${ }^{\circ}$. (Found: $\mathrm{C}, 53 \cdot 46 ; \mathrm{H}, 5 \cdot 33$. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNO}$ requires: $\mathrm{C}, 53.74 ; \mathrm{H}, 5.26 \%$).
p-Bromophenylcyclohexane. The reduction of 3 -(p-bromophenyl)cyclohexanone (6 g) by the WolffKishner method as described afforded this as a colourless liquid (2.5 g) boiling at $132-134^{\circ} / 10 \mathrm{~mm} ; n_{\mathrm{D}}^{10}$ $1.5570 ; d_{4}^{30} 1-248$. (Found: $\mathrm{C}, 60-48 ; \mathrm{H}, 6.63 . \mathrm{C}_{12} \mathrm{H}_{1,} \mathrm{Br}$ requires: $\mathrm{C}, 60-24 ; \mathrm{H}, 6.32 \%$).

3,3,5-Trimethyl-5-phenylcyclohexanone. This was obtained as described previously. ${ }^{7}$
5 -(p-Bromophenyl)-3,3,5-trimethylcyclohexanone. The reaction of p-bromophenylmagnesium bromide (from 48 g p-dibromobenzene and 5.6 g magnesium) with isophorone (12 g) in the presence of cuprous chloride (0.4 g) was carried out as described for 3 -(p-bromophenyl)cyclohexanone to give an oil (10 g) boiling at $155-170^{\circ} / 2 \mathrm{~mm}$. The semicarbazone obtained from this, after washing several times with light
petroleum (b.p. 40-60) and two crystallizations from dioxan-water melted at a constant temp, 170-171 ${ }^{\circ}$ (yield, 8 g). (Found: $\mathrm{C}, 54 \cdot 29 ; \mathrm{H}, 6.49 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}$ requires: $\mathrm{C}, 54 \cdot 55 ; \mathrm{H}, 6 \cdot 30 \%$).

Hydrolysis of the semicarbazone with aqueous oxalic acid ($20 \%, 200 \mathrm{ml}$) afforded the above cyclohexanone as a solid (5.2 g) which crystallized as colourless stout needles from MeOH, m.p. 103-104 ${ }^{\circ}$. (Found: C, $61 \cdot 60 ; \mathrm{H}, 6 \cdot 22 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}$ requires: $\mathrm{C}, 61 \cdot 40 ; \mathrm{H}, 6.49 \%$).

The oxime crystallized as colourless glistening plates from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, m.p. 179-180 ${ }^{\circ}$. (Found: C. $58.22, \mathrm{H}, 6.59 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrNO}$ requires: $\mathrm{C}, 58.09 ; \mathrm{H}, 6.50 \%$).

Purification of the solvents

"Analar" benzene was frozen three times, dried over Na wire and distilled over $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
"Analar" cyclohexane was washed several times with a mixture of conc. nitric and sulphuric acids. After repeated washings with distilled water, it was dried over sodium wire, distilled, the fraction boiling at $80-5-81^{\circ}$ collected, passed through a column of silica gel and finally distilled; the fraction boiling at 80.6° was used.
n-Butyl ether was freed from any peroxide by shaking with an acidified soln of ferrous sulphate, washed with water repeatedly, dried (anhyd CaCl_{2}) and distilled over Na wire using a fractionating column. The fraction boiling at 141° was used.

Physical measurements

All the dipole moment measurements were made in benzene soln. The dielectric constants were measured at $30 \pm 0.05^{\circ}$ using Dipolmeter DM OI, manufactured by Wissenschaftlich-Technische, Werkstatten, Weilheim (Obb), Germany. The measuring cell (supplied by the manufacturers) of suitable capacitance formed part of one of two oscillators (frequency approx. $2 \mathrm{mc} / \mathrm{s}$) which were tuned to each other. The instrument was calibrated with purified cyclohexane, benzene and n-butyl ether. Assuming the dielectric constants of these liquids at 30°, the scale value of the measuring condensers was estimated through linear interpolation.

The refractive indices were measured at $30^{\circ} \pm 1^{\circ}$. The density measurements for all solutions were made at $30 \pm 0-05^{\circ}$. In the case of liquids the molar refraction was calculated from the density and refractive index measurements. In the case of solids R_{D} was estimated from measurements made on benzene solutions with a Bellingham and Staniey refractometer of the Pulfrich type.

Acknowledgement-The authors wish to thank Professor V. Baliah for his interest and encouragement and the Government of India for the award of a research scholarship to one of them (A.D.)

REFERENCES

[^1]
[^0]: * Present address: Department of Post-graduate Chemistry, V.H.N.S.N. College, Virudhunagar, South India. All communications with regard to this paper to be sent to this address.

[^1]: ${ }^{1}$ J. Allinger and N. L. Allinger, Tetrahedron 13, 64 (1957).
 ${ }^{2}$ W. D. Kumler and A. C. Huitric, J. Am. Chem. Soc. 78, 3369 (1956).
 ${ }^{3}$ A. Mossel, C. Romers and E. Having, Tetrahedron Letters 19, 1247 (1963).
 ${ }^{4}$ F. Lantenschlaeger and G. F. Wright, Canad. J. Chem. 41, 1972 (1963).
 ${ }^{5}$ N. L. Allinger and M. A. Da Rooge, J. Am. Chem. Soc. 84, 4561 (1962).
 ${ }^{6}$ M. Balasubramanian and A. D'Souza, Tetrahedron Letters No. 27, 1891 (1963).
 ${ }^{7}$ M. Balasubramanian and A. D'Souza, Tetrahedron 24, 5399 (1968).
 ${ }^{8}$ C. W. N. Cumper and S. Walker, Trans. Faraday Soc. 52, 193 (1956).
 ${ }^{9}$ E. J. Corey and R. A. Sneen, J. Am. Chem. Soc. 77, 2505 (1955).
 ${ }^{10}$ J. Allinger and N. L. Allinger, Tetrahedron, No. 2, 64 (1957).
 ${ }^{11}$ A. D'Souza, Ph.D. Thesis, Annamalai University (1964).
 ${ }^{12}$ N. L. Allinger, J. Allinger and M. A. Da Rooge, J. Org. Chem. 27, 4603 (1962).
 ${ }^{13}$ E. L. Eliel, N. L. Allinger, S. J. Angyal and G. A. Morrison, Conformational Analysis p. 126. Interscience, New York (1965).
 14 L. C. G. Goaman and D. F. Grant, Tetrahedron 12, 1531 (1963).
 ${ }^{15}$ A. J. Boyd, P. A. Clifford and M. E. Probert, J. Chem. Soc. 117, 1383 (1920).
 ${ }^{16}$ E. Bergmann, Ber. Dtsch. Chem. Ges. 64, 1481 (1931).
 ${ }^{17}$ F. C. Whitmore and G. W. Pedlow, Jr., J. Am. Chem. Soc. 63, 758 (1941).

