Tetrazole Compounds. 8 [1]. Synthesis of Tetrazolylpyrimidines from Tetrazolyl-substituted Enamino Ketones

Gerhard W. Fischer

Wissenschaftler-Integrationsprogramm in Trägerschaft KAI e.V., Permoserstrasse 15, 04303 Leipzig, Germany Received June 15, 1993

Tetrazolyl-substituted enamino ketones 1 react with various amidines 2 to give 5-(1-phenyl-1*H*-tetrazol-5-yl)pyrimidines 3. In the case of the chloroacetyl enamine 4 4-(*N*,*N*-dimethylaminomethyl)-substituted tetrazolylpyrimidines 5 were obtained. Subsequent hydrolysis of the 4-trifluoromethyl derivatives 3b, 3d and 3g afforded the corresponding 5-(1-phenyl-1*H*-tetrazol-5-yl)pyrimidine-4-carboxylic acids 6.

J. Heterocyclic Chem., 30, 1517 (1993).

A series of tetrazolyl-substituted pyrimidines are of pharmacological interest because of their antiallergic [2-6], antiulcer [7], antiinflammatory and CNS depressant activity [8]. As a rule, these and other tetrazolylpyrimidines described in the literature [9-15] were synthesized starting from suitable pyrimidine derivatives, either through a tetrazole ring-closure reaction or by introducing a tetrazole moiety via displacement reactions [10,11].

In continuation of studies on tetrazole compounds bearing novel functionalities, this communication describes an alternative approach to tetrazolylpyrimidines using tetrazolyl-substituted enamino ketones of type 1 as precursors. The latter are accessible by acylation of 1-aryl-5-(2-dimethylaminovinyl)-1*H*-tetrazoles [16,17], the preparation of which is likewise very simple [18]. As reported in the previous paper [1], enaminones of type 1 proved to be useful building blocks for novel pyrazolyl- and isoxazolyl-tetrazoles and should function therefore also as promising starting compounds for tetrazolylpyrimidines [19].

Indeed, on reacting 1 in ethanolic solution with carboxylic acid amidines 2 (R = H, Me, Ph) in the presence of sodium ethoxide the 4- and 2,4-substituted 5-(1-phenyl-1*H*-tetrazol-5-yl)pyrimidines 3a-h were obtained in good

NH₂

yields [20]. Under the same conditions, reaction of 1 with guanidine (2, R = NH₂) and N-methylguanidine (2, R = NHMe) gave the 2-amino derivatives 3i-p. Analogously, O-methylisourea (2, R = OMe) and S-alkylisothioureas (2, R = SMe, SEt, SCH₂Ph) afforded the 2-methoxy and 2-alkylmercapto derivatives 3q-v. In the case of 3q-s, however, methanol/sodium methoxide should be used as the reaction medium, otherwise a partial transalkylation (formation of O- and S-ethyl products) takes place.

While a trifluoromethyl group in 1 under the conditions of the ring-closure reaction remains unaffected, the chloromethyl group of the enamino ketone 4 is transformed by released dimethylamine into a dimethylaminomethyl group, yielding tetrazolylpyrimidines of type 5.

On subsequent treating with aqueous sodium hydroxide in ethanolic solution, however, the trifluoromethyl derivatives **3b**, **3d** and **3g** undergo hydrolysis to give the corresponding carboxylic acids **6a-c**. This fact is remarkable inasmuch as the alkaline hydrolysis of trifluoromethyl groups in aromatic systems requires certain structural suppositions [21]. In case of **3b**, **3d** and **3g** obviously the 1-aryl-1*H*-tetrazol-5-yl system supports the hydrolyzability of the trifluoromethyl group.

The structure of the new compounds 3, 5 and 6 is confirmed by spectroscopic and analytical data. In the 'H nmr spectra of some 2-amino derivatives, 3j, 3n-p and 5d, signal splitting is observed due to hindered rotation of the amino group [22].

Table 1
4- and 2,4-Substituted 5-(1-Phenyl-1*H*-tetrazol-5-yl)pyrimidines 3a-v and 5a-d

Compound	Yield %	Mp ℃	¹ H nor	Molecular	Α	nalyses	cz.
		C	δ, ppm	Formula	Analyses % Calcd./Found C II N		
3a	76	114-115 [a]	2.36 (s, 3H, CH ₃), 7.57 (s, 5H, C ₆ H ₅), 8.73 (s, 1H, H-6), 9.19 (s, 1H, H-2)	$C_{12}II_{10}N_{6}$	60.50 60.37	4.23 4.11	35.27 34.95
3b	72	151-152 [b]	7.50-7.60 (m, 5H, C ₆ H ₅), 9.46 (s, 1H, H-6), 9.70 (s, 1H, H-2)	$C_{12}H_7F_3N_6$	49.32 49.53	2.41 2.22	28.76 28.51
3c	75	121-122 [b]	6.85-7.44 (m, 10H, 2 x C ₆ H ₅), 9.29 (s, 1H, II-6), 9.47 (s, 1H, H-2)	$C_{17}II_{12}N_{6}$	67.99 68.21	4.03 3.95	27.98 28.10
3d	97	140-141 [b]	2.83 (s, 3H, CH ₃), 7.50-7.60 (m, 5H, C ₆ H ₅), 9.32 (s, 1H, H-6)	$C_{13}H_9F_3N_6$	50.99 51.08	2.96 3.05	27.44 27.32
3e	89	130-131 [b]	2.77 (s, 3H, CH ₃), 6.85-7.43 (m, 10H, 2 x C ₆ H ₅), 9.15 (s, 1H, H-6)	$C_{18}II_{14}N_6$	68.78 68.59	4.49 4.35	26.73 26.60
31	76	113-114 [b]	2.49 (s, 3H, CH ₃), 7.53-8.47 (m, 10H, 2 x C ₆ H ₅), 8.83 (s, 1H, H-6)	$C_{18}H_{14}N_{6}$	68.78 68.85	4.49 4.55	26.73 26.68
3g	95	134-135 [b]	7.60-8.47 (m, 10H, 2 x $C_6\Pi_5$), 9.46 (s, 1H, H-6),	$C_{18}H_{11}F_3N_6$	58.70 58.87	3.01 2.93	22.82 22.68
3h	98	182-183 [c]	6.91-8.57 (m, 1511, 3 x C ₆ H ₅), 9.37 (s, 1H, H-6)	$C_{23}H_{16}N_{6}$	73.39 73.21	4.28 4.19	22.32 22.15
3i	73	212-213 [c]	2.14 (s, 3H, CH ₃), 7.21 (s, 2H, NH ₂), 7.55-7.62 (m, 5H, C ₆ H ₅), 8.08 (s, 1H, H-6)	$C_{12}II_{11}N_{7}$	56.91 57.10	4.38 4.45	38.72 38.51
3j	87	179-180 [c]	7.49-7.61 (m, 511, C ₆ 11 ₅), 8.01 (s, 1H, NH), 8.09 (s, 1H, NH), 8.69 (s, 1H, H-6)	$C_{12}II_8F_3N_7$	46.91 50.08	2.62 2.47	31.91 31.79
3k	90	170-171 [b]	1.00 (t, 311, CH ₃), 2.42 (q, 211, CH ₂), 7.24 (s, 2H, NH ₂), 7.54-7.65 (m, 511, C ₆ H ₅), 8.12 (s, 1H, H-6)	$C_{13}H_{13}N_{7}$	58.42 58.60	4.90 4.95	36.68 36.47
31	94	132-133 [b]	0.78 (t, 3H, CH ₃), 1.47 (m, 2H, CH ₂), 2.36 (t, 2H, CH ₂), 7.23 (s, 2H, NH ₂), 7.53-7.63 (m, 5H, C ₆ H ₅), 8.14 (s, 1H, H-6)	$C_{14}II_{15}N_{7}$	59.77 59.56	5.37 5.31	34.85 35.03
3m	90	267-268 [c]	6.78-7.40 (m, 10H, 2 x C ₆ H ₅), 7.43 (s, 2H, NH ₂), 8.63 (s, 1H, H-6)	$C_{17}II_{13}N_{7}$	64.75 64.82	4.16 4.09	31.09 30.95
30	72	169-170 [d]	2.15/2.18 (2s, 3H, CII ₃), 2.80/2.82 (2d, J = 4.0 Hz, 3H, NCII ₃), 7.59 (s, 5H, C ₆ H ₅), 7.65/7.71 (2br, 1H, NH), 8.07/8.15 (2s, 1H, H-6)	$C_{13}H_{13}N_{7}$	58.42 58.29	4.90 4.75	36.68 36.80
30	96	168-169 [c]	2.87/2.89 (2d, $J = 4.8 \text{ Hz}$, 3H, NCH 3), 7.51-7.65 (m, 5H, C_6 H5), 8.47/8.52 (2q, $J = 4.8 \text{ Hz}$, 1H, NH), 8.70/8.79 (2s, 1H, H-6)	$C_{13}II_{10}F_3N_7$	48.60 48.76	3.14 3.20	30.52 30.38
3p	97	226-227 [c]	2.86/2.91 (2d, J = 4.5 Hz, 3H, NCH ₃), 6.76-7.42 (m, 10H, 2 x C ₆ H ₅), 7.91 (q, J = 4.5 Hz, 1H, NH), 8.61/8.71 (2s, 1H, H-6)	$C_{18}II_{15}N_{7}$	65.64 65.47	4.59 4.45	29.77 30.02
3q	78	97-98 [b]	4.07 (s, 3H, CH ₃), 7.51-7.65 (m, 5H, C ₆ H ₅), 9.20 (s, 1H, H-6)	$C_{13}II_9F_3N_6O$	48.45 48.61	2.82 2.77	26.08 25.95
3r	96	136-137 [b]	4.03 (s, 311, NCH ₃), 6.82-7.43 (m, 10H, 2 x C ₆ H ₅), 9.04 (s, 1H, H-6)	$C_{18}H_{14}N_{6}O$	65.45 65.29	4.27 4.34	25.44 25.38
3s	76	178-1 7 9 [b]	2.60 (s, 111, CH ₃), 6.86-7.43 (m, 10H, 2 x C ₆ H ₅), 9.04 (s, 111, H-6)	$C_{18}II_{14}N_6S$	62.41 62.57	4.07 3.94	24.26 24.45
34	51	105-106 [b]	1.35 (t, 311, CH ₃), 3.29 (q, 2H, CH ₂), 7.57-7.63 (m, 5H, C ₆ H ₅), 9.17 (s, 1H, H-6)	$C_{14}II_{11}F_3N_6S$	47.73 47.50	3.15 3.08	23.85 24.02
3u	79	128-129 [b]	1.34 (t, 3H, CH ₃), 3.19 (q. 2H, CH ₂), 6.83-7.40 (m, 10H, 2 x C ₆ H ₅), 9.01 (s, 1H, H-6)	$C_{19}H_{16}N_6S$	63.31 63.45	4.47 4.51	23.32 23.18
3v	84	120-121 [b]	4.50 (s, 2H, CH ₂), 6.83-7.45 (m, 15H, 3 x C ₆ H ₅), 9.05 (s, 1H, H-6)	$C_{24}II_{18}N_6S$	68.23 68.37	4.29 4.15	19.89 20.05
5a	54	143-144 [d]	1.85 (s, 6H, CH ₃ NCH ₃), 2.68 (s, 3H, CH ₃), 3.35 (s, 2H, CH ₂), 7.49-7.60 (m, 5H, C ₆ H ₅), 8.83 (s, 1H, H-6)	$C_{15}II_{17}N_{7}$	61.00 59.84	5.80 5.67	33.20 33.11
5b	77	142-143 [d]	1.94 (s, 6H, CH ₃ NCH ₃), 3.51 (s, 2H, NH ₂), 7.54-8.50 (m, 10H, 2 x C ₆ H ₅), 9.06 (s, 1H, H-6)	$C_{20}II_{19}N_{7}$	67.21 67.33	5.36 5.45	27.43 27.27
5c	52	194-195 [b]	1.86 (s, 6H, CH ₃ NCH ₃), 3.15 (s, 2H, CH ₂), 7.29 (s, 2H, NH ₂), 7.48-7.62 (m, 5H, C ₆ H ₅), 8.53 (s, 1H, H-6)	$C_{14}II_{16}N_8$	56.74 56.85	5.44 5.33	37.81 37.60
5d	61	197-198 [b]	1.86 (s, 6H, CH ₃ NCH ₃), 2.81/2.83 (2s, 3H, NCH ₃), 3.16/3.17 (2s, 2H, CH ₂), 7.48-7.62 (m, 5H, C ₆ H ₅), 7.80/7.82 (2s, 1H, NH), 8.23/8.31 (2s, 1H, H-6)	$C_{15}II_{18}N_8$	58.05 57.92	5.85 5.69	36.10 36.25

EXPERIMENTAL

Melting points were determined on a "Boetius" hot-stage apparatus and are uncorrected. The ¹H nmr spectra were recorded with a Bruker AM 250 instrument (250 MHz) at ambient temperature using DMSO-d₆ as the deuterated solvent and TMS as the internal reference. The preparation of the enamino ketones 1 and 4 is described [17,18]. The amidines 2 were used in the form of the following salts: Formamidine as the acetate, acetamidine, benzamidine, N-methylguanidine and S-benzylthiopseudourea as the hydrochlorides, S-ethylthiopseudourea as the hydrobromide, guanidine and S-methylthiopseudourea as the sulfates, and O-methylisourea as the hydrogen sulfate.

General Procedure for the Preparation of Tetrazolylpyrimidines 3a-v and 5a-d.

To a hot solution of 5 mmoles of enamino ketones 1 or 4, respectively, and 10 mmoles of amidines 2 (used in form of the salts mentioned above) in ethanol (30 ml) a 1M ethanolic solution of sodium ethoxide (10 ml, 10 mmoles) was added; in the case of 2, R = OMe and SMe methanol/sodium methoxide was used as reaction medium. After refluxing for 2 hours with magnetic stirring, the solvent was partially distilled off (ca. 30 ml). On cooling or if necessary by dropwise addition of water the products 3 and 5 precipitated as colorless crystals. Yields and physical properties as well as the solvents used for recrystallization are reported in Table 1.

General Procedure for the Preparation of Tetrazolylpyrimidine-4-carboxylic Acids **6a-c**.

Under refluxing and magnetic stirring 5N aqueous sodium hydroxide (20 ml) was added dropwise to a solution of 5 mmoles of **3b**, **3d** and **3g**, respectively, in ethanol (20 ml). After refluxing for 4 hours, part of ethanol (ca. 15 ml) was removed by distillation an the cold concentrate neutralized with concentrated hydrochloric acid to give acids **6a-c**.

5-(1-Phenyl-1 H-tetrazol-5-yl)pyrimidine-4-carboxylic Acid (6a).

This compound was obtained in 55% yield as colorless needles (ethanol/water), mp 160-161°; 'H nmr: δ 7.56 (s, 5H, C₆H₅), 8.43 (s, 1H, H-6), 8.46 (s, 1H, H-2), 13.16 (br, 1H, COOH).

Anal. Calcd. for $C_{12}H_8N_8O_2$: C, 53.73; H, 3.01; N, 31.33. Found: C, 54.02; H, 2.83; N, 31.18.

2-Methyl-5-(1-phenyl-1*H*-tetrazol-5-yl)pyrimidine-4-carboxylic Acid (**6b**).

This compound was obtained in 76% yield as colorless crystals (ethanol), mp 237-238°; ¹H nmr: δ 2.36 (s, 3H, CH₃), 7.77 (s, 5H, C₆H₅), 8.35 (s, 1H, H-6), 13.01 (br, 1H, COOH).

Anal. Calcd. for $C_{13}H_{10}N_6O_2$: C, 55.32; H, 3.57; N, 29.78. Found: C, 55.44; H, 3.49; N, 29.52.

2-Phenyl-5-(1-phenyl-1*H*-tetrazol-5-yl)pyrimidine-4-carboxylic Acid (**6c**).

This compound was obtained in 84% yield as colorless needles (acetic acid), mp 284-285° dec; 'H nmr: δ 7.54-8.18 (m, 10H, 2 x C_c H_s), 8.61 (s, 1H, H-6), 13.35 (br, 1H, COOH).

Anal. Calcd. for $C_{18}H_{12}N_6O_2$: C, 62.79; H, 3.51; N, 24.41. Found: C, 62.59; H, 3.38; N, 24.64.

Acknowledgements.

The author wishs to thank the Fonds der Chemischen Industrie for financial support.

REFERENCES AND NOTES

- [1] Part 7: G. W. Fischer, J. Prakt. Chem., in press.
- [2] P. F. Juby and R. A. Partyka, German Offen. 2,705,609, Aug. 25 (1977); Chem. Abstr., 87, 201578 (1977).
- [3] P. F. Juby, T. W. Hudyma, M. Brown, J. M. Essery and R. A. Partyka, J. Med. Chem., 25, 1145 (1982).
- [4] Y. Honma, Y. Sekine, T. Hashiyama, M. Takeda, Y. Ono and K. Tsuzurahara, Chem. Pharm. Bull., 30, 4314 (1982).
- [5] Fujisawa Pharmaceutical Co., Japan Patent 57 176,981 (82 176,981), Oct. 30 (1982); Chem. Abstr., 98, 143453 (1983).
- [6] K. Kosegi, M. Sawada and T. Ichikawa, Japan Patent 61 91,184 (86 91,184), May 9 (1986); Chem. Abstr., 105, 208920 (1986).
- [7] M. Ikeda and S. Susumu, European Patent Appl. EP 257,850, March 2 (1988); Chem. Abstr., 109, 6543 (1988).
- [8] D. H. Kim and A. A. Santilli, U. S. Patent 3,816,423, June 11 (1974); Chem. Abstr., 81, 120687 (1974).
 - [9] J. P. Horowitz and A. J. Tomson, J. Org. Chem., 26, 3392 (1961).
- [10] B. K. Snell, R. S. Elias and P. F. H. Freeman, South African Patent 6,701,373, Oct. 11 (1968); Chem. Abstr., 71, 91517 (1969).
- [11] A. Könnecke, R. Dörre and E. Lippmann, Tetrahedron Letters, 2071 (1978).
- [12] K. Hiroto, K. Maruhashi, T. Asao and S. Senda, Heterocycles, 15, 285 (1981).
- [13] K. Kamala, P. J. Rao and K. K. Reddy, Bull. Chem. Soc. Japan, 61, 3791 (1988).
- [14] S. A. DeFrees, D. P. Sawick, B. Cunningham, P. F. Heinstein, D. J. Morre and J. M. Cassady, *Biochem. Pharmacol.*, 37, 3807 (1988).
 - [15] W. Ried and S. Aboul-Fetouh, Chem.-Ztg., 112, 135 (1988).
 - [16] G. W. Fischer, J. Prakt. Chem., 332, 977 (1990).
 - [17] G. W. Fischer, J. Prakt. Chem., 335, 461 (1993).
 - [18] G. W. Fischer and M. Herrmann, J. Prakt. Chem., 330, 963 (1988).
- [19] For other pyrimidine syntheses using enamino ketones see H. Bredereck, F. Effenberger and H. Botsch, *Chem. Ber.*, **97**, 3397 (1964); B. Graffe, M.-C. Saquet, M.-C. Bellassued-Fargeau and P. Maitte, *J. Heterocyclic Chem.*, **23**, 1753 (1986).
- [20] All the amidines 2 were used in form of suitable salts (see Experimental). For tetrazolylpyrimidines of type 3 bearing substituted phenyl groups in position 1 of the tetrazole ring see G. W. Fischer and B. Olk, German (East) Patent DD 294,255, Sept. 26 (1991); Chem. Abstr., 116, 128952 (1992).
- [21] For a review see H. Forche, in Methoden der Organischen Chemie (Houben-Weyl), Vol V/3, E. Müller, ed, Georg Thieme Verlag, Stuttgart, 1962, pp 476-477.
 - [22] The split signals coalesce at temperature up to 50°.