THE SYNTHESIS OF BORON NITRIDE AND BORON CARBIDE BY PYROLYSIS OF BORIC ACID/1,2,3-PROPANETRIOL CONDENSATION PRODUCT

Hiroaki WADA, Shuichi ITO, Kazuyuki KURODA, and Chuzo KATO^{*} Department of Applied Chemistry, Waseda University, Ohkubo, Shinjuku-ku, Tokyo 160

Both boron nitride and boron carbide were synthesized by the pyrolysis of the boric acid/1,2,3-propanetriol condensation product above 1300 $^{\circ}$ C in N₂, whereas the thermal treatment in an Ar flow yielded boron carbide.

Polymer pyrolysis is now considered as one of the important methods of preparing various ceramics such as SiC, $\text{Si}_{3}\text{N}_{4}$, and $\text{SiC-B}_{4}\text{C.}^{1}$ Boron nitride (BN) was also prepared by using pyrolytic process of a B-N containing polymer.²⁾ During the study of the thermal stability of borate esters of polyhydroxy alcohols, we found that the borate ester of 1,2,3-propanetriol could be used as a precursor of BN ceramics. Though the preparation and properties of the borate ester of 1,2,3propanetriol have been reported,³⁾ its thermal treatment has not yet been investigated. Therefore, we here report the synthesis of BN and B_{4} C by the thermal treatment of boric acid/1,2,3-propanetriol ester.

The condensation product was prepared by heating an equimolar mixture of H_3BO_3 and 1,2,3-propanetriol at 150 °C in an evaporator. A glassy colorless transparent product was obtained. It showed spinnability on heating. Chemical analysis of the product showed that 1:1 (H_3BO_3 :1,2,3-propanetriol) ester was formed (Found: B, 10.48; C,35.73; H,5.01%; Calcd for ($C_3H_5O_3B$)n: B,10.82; C,36.08; H,5.06%). The IR spectrum of the condensation product dissolved in CHCl₃ indicated that the dehydration was complete and that both the bonded B-O and C-O absorptions were observed. The product (ca. 1.5 g) was put into an alumina boat, which was then placed in a mullite tube and heated to various temperatures (900-1400 °C) in a N_2 or Ar flow at a rate of 500 cm³ min⁻¹. The heating rate was 7 °C min⁻¹ up to 600 °C, and 5 °C min⁻¹ above 600 °C.

When the condensation product was heated under 1200 $^{\circ}$ C, only $B_{2}O_{3}$ was detected regardless of the gas used and the heating time. The color of the heat-treated samples was black, suggesting that the decomposition of the product produced amorphous carbon and $B_{2}O_{3}$.

When the product was heated above 1300 $^{\circ}$ C in a N₂ flow for 2 and 4 h, BN and B₄C were formed as shown in Figs. 1a-c. The crystallinity increased with the increases of heating temperature and heating time. However, BN formed in this process was not well crystallized even at 1300 $^{\circ}$ C. The d₀₀₂ peak at 20=26.6 $^{\circ}$ was very broad. Moreover, the d₁₀₂ peak which was characteristic of the three-dimensional order of BN was absent. This indicated the low crystallinity of the

formed BN. The XRD patterns also revealed that small amount of B_4C was formed in this process.

The color of the heat-treated samples was black when heated at 1300 $^{\circ}$ C, whereas it became gray at 1400 $^{\circ}$ C. This indicated that the peak at 26.6 $^{\circ}$ was mainly ascribed to BN rather than graphite. This was in consistent with the IR spectra. The intensity of the absorption bands around 1400 and 800 cm⁻¹ due to BN⁴) increased with the increase of heating temperature compared to the peak at about 1080 cm⁻¹ assigned to B,C.⁴)

When the borate ester was heated in an Ar flow at 1400 $^{\circ}$ C for 2 h, boron carbide was detected by XRD (Fig. 1d) and IR. The additional and distinct peak at 20=26.6 $^{\circ}$ was ascribable to graphite since there was no possibility of forming BN in an Ar flow.

In the XRD patterns, additional peaks except B_4C , BN, and graphite were observed. These peaks were ascribed to $Al_4B_2O_9$ $(2Al_2O_3B_2O_3)^{5}$ or $Al_{18}B_4O_{33}$ (9Al_2O_3 $2B_2O_3$) formed by the solid reaction 15 between the ester and the alumina boat. The formation of the oxide was also confirmed by X-ray fluorescence analysis. This result was in agreement with the phase diagram of B_2O_3 and Al_2O_3 .

The results indicated that organoborate esters could be used as a precursor for the preparation of boron-containing ceramics.

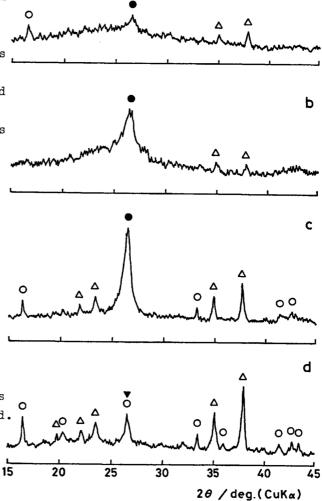
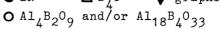



Fig. 1. XRD patterns of heat-treated samples of $H_3BO_3/1,2,3$ -propanetriol condensation product pyrolyzed at (a) 1300 °C,2 h in N₂, (b) 1300 °C, 4 h in N₂, (c) 1400 °C, 4 h in N₂, and (d) 1400 °C, 2 h in Ar. • BN ΔB_1C \forall graphite

This work was supported by the Kawakami Memorial Foundation. References

1) R. W. Rice, Am. Ceram. Soc. Bull., <u>62</u>, 889 (1983).

2) I. Taniguchi, K. Harada, and T. Maeda, Japan Kokai, 51-53000 (1976).

- 3) H. Steinberg, "Organoboron Chemistry, Vol.1 Boron-oxygen and Boron-sulfur Compounds," Interscience, New York (1964), Chap. 5.
- 4) E. G. Brame, Jr., J. L. Margrave, and V. W. Meloche, J. Inorg. Nucl. Chem., <u>5</u>, 48 (1957).
- 5) JCPDS cards, 29-10.
- 6) JCPDS cards, 32-3.

7) P. J. M. Gielisse and W. R. Foster, Nature, 195, 69 (1962).

(Received January 31, 1985)

692