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Abstract: Enolates o f  chirai propionic acid amides were oxidatively dimerized with cupric salts or iodine with high 
simple as well as induced diastereaselectivity o f  up to 99:1. Intramolecular coupling o f  chiral dienolates o f  1, 7-hep- 

tanediamides led to a 1,2-disubstituted cyclopentane and a derivative o f  1,2,6, 7-cyclodecane tetracarboxylic acid 

Oxidative coupling of  stabilized earbanions such as dilithiated carboxylic acids I or enolates of  carboxylic acid 

derivatives 2 and ketones 3 offers a convenient method for C-C bond formation and is reported to proceed both 

intermoleculariy and intramolecuiarly in good yields 4 (Scheme 1). Furthermore, it provides an efficient synthetic 

approach to lignans s, an important class of natural products displaying useful biological activities, e.g., as anti- 

cancer drugs. Recently we 6 and others 7 reported auxiliary controlled diastereoselective variants of this reaction. 

High levels of simple and induced diastereoselection were found. In this paper we report more detailed informa- 

tion and further investigations on this subject. 
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With the exception of  a few examples, 8 simple 9 diastercoselectivity in oxidative dimerization of achiral substrates 

seems to be low. In order to confirm this point, we deprotonated substrates l a  and l b  at -78 °C in THF 

following a procedure of Rathke 1° (Scheme 2). After addition of 0.5 eq. of  I2 or copper-(II)-pentanoate the 

reaction mixture was allowed to warm up to room temperature over night to give coupling products 3a and 3b 

in ratios of  57:43 and 48:52, respectively (Table 1) 11. Thus, a significant degree of  diastereoselection is not 

displayed in this reaction. However, dramatically improved results were obtained when the chiral amide 1¢ or 

ester ld  were subjected to the same reaction conditions. With these substrates we found high simple 8 as well as 

induced 8 diastereoselectivity in favour of (S,S)-3 (entries 3-6, Table 1). These results are surprising because 

normally simple diastereoselectivity is little affected by an auxiliary. The steric course of this reaction can be 

generally rationalized as follows: if the primary oxidation products are achiral radical species, enantiotopic half 

spaces at the reacting G,, described by descriptors Re and Si, combine non-selectively. This is obviously the case 

in the conversion of achiral substrates l a  and l b  to the coupling products 3a and 3b. All combinations (Si/Si, 

Re~Re and Re/Si, Si/Re) seem to be energetically equivalent. On the other hand, in enolates or radicals of chiral 

acyl derivatives 1¢ and l d  one of  the diastereotopic half spaces of the reacting carbon is effectively sterically 

shielded. This can be assessed from alkylation experiments with enolates 2¢ and 2d which proceed with dia- 
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stereoselectivity of 98:2. So either (Re~Re) or (Si/Si), i.e., the lk combinations should be favoured provided that 

radical intermediates are configurationally stable. 

The following points are of  special interest: iodine or copper-0I)-pentanoate as oxidants yield the same 

products and the same high degree of  diastereoselectivity. Aeyl derivatives of  auxiliary $ have been shown to 

yield syn-enolates after deprotonation which are attacked by electrophiles at the C=-Re face with selectivity of 

>95:<512. Therefore, the exclusive Re~Re combination of syn-2e 13 is consistent with the (S,S)-¢onfiguration 

achieved in product 3c. Surprisingly, products with the same relative configuration were obtained with aeyl 

derivatives of 6 although anti-enolates are generated under essentially the same deprotonation conditions (IDA, 

-78 °C, THF). Anti-enolates of esters of 6 are known to react with electrophiles at the C=-Si face. Thus, 

anti ~ san isomerization of enolate or radical species must have occurred. 
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Table 1. Simple and Induced Diastereoselectivity in Oxidative Dimerizations ofEnolates of  Propionic Acid 
Derivatives (reaction conditions see ge£ 14) 

Entry Substrate Oxidant Diastereoselectivity Yield [%] 

1 la  1.5 eq.Cu(II) rac-3a : meso-3a = 57 : 43" 25 

2 l b  0.5 eq. I2 rac-3b : meso-3b = 48 : 52b 33 

3 lC 0.7 eq. I2 (S,S)-3c : (/~R)-3c : (S,R)-3c = >99 : <1 : <1 b 70 

4 le  1.1 ex/. Cu(II) (S,S)-3c : (R,R)-3c : (S,R)-3c = >99 : <1 : <1 b 66 

5 = ld  0.5 eq. I2 (S,S)-3d : (R,R)-3d : (S,R)-3d = 95 " 2.5 : 2.5 b 86 

6 ld  1.0 eq. Cu(II) (S,S)-3d : (R,R)-3d : (S,R)-3d = >99 : <1 : <1 b 36 

• Determined by glc (capillary column, HP-1, crosslinked methyl silicone, 25 m x 0.2 mm x 0.33 lam). 
b Determined by HPLC (silica, Merck Hibar Lichrosorb, 250 x 4 mm, Si 60, 5 mm, RI detection). 
c Lithium cyclohexylisopropylamide was used instead of  LDA. 
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These results stimulated further experiments to gain insight into the mechanism of  the reaction. When 0.5 eq. of 

h was added to a solution of enolate syn-2c at -78 °C (coupling commences above -10 °C) the ct-iodo derivati- 

ves 7 were formed non-selectively. On the other hand, when diastereomerically pure 9a (9b) ]s was added in an 

analogous procedure to an enolate solution of 8 without warming up (Scheme 3), isomerization of 9a (9b) oc- 

cured and 43% 8, 13% 9a and 34% 9b (41% 8, 10% 9a and 37% 9b) were isolated. Control experiments 

proved that neither D- nor I-transfer occurred. We assume involvement of  a SET mechanism which could 

explain the isomerization of  enolate anti-2d as well as the isomerization of 9a and 9b. SET mechanisms have 

already been proposed for oxidative coupling of dilithiated carboxylic acids ~ with iodine. 
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It was also of  interest to investigate intramolecular oxidative coupling ~6. The acid diamide 10 (Scheme 4) was 

converted with 5 eq. of LDA into the corresponding dienolate which was oxidized with 5 eq. of CuBr2. 

Surprisingly, the 1,2,6,7-cyclodecane tetraamide 12 was isolated (17 %) in addition to the anticipated 1,2-cyclo- 

pentane diamide 11 (23 %), both as pure stereoisomers (Scheme 4). The configuration of 11 was determined by 

saponification and esterification to (S,S)-dimethyl 1,2-cyclopentanedicarboxylate ([ct]~ = + 47.5, c = 0.54, CCh; 

Ref. 17 [ot]~ = +47.9, c = 0.012, CCh). 

S c h e m e  4 O O [- OU OU ] 
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The cyclodecane derivative 12, one of seven possible diastereomers ~8, was not the expected (IS,2S,6S, TS)-iso- 

met 12a as proton NMR spectra displayed two sets of signals of the auxiliary group and the saponification 

product was optically inactive. Tentatively we assign the (S,S, KR)-confignration (12g) by assuming that two 

stereogenic centres are formed under control of  the auxiliary; auxiliary control of the other two centers in a tran- 

sition gate resembling the most gable BCB cyclodecane conformation TM would require a diaxial disposition of 

amide groups. Therefore, we assume that the second bond forming step proceeds under substrate control, i. e., 

with diequatorial disposition of the substituents as described below: 
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