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Abstract: A practical and environmentally friendly method has
been developed for the synthesis of thiol-substituted cyclohex-2-
enones using a FeCl3-catalyzed condensation of cyclic 1,3-dicar-
bonyl compounds and aromatic/aliphatic thiols under solvent-free
conditions at ambient temperature.
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Organosulfur compounds represent an important class of
bioactive organic molecules and have been widely used as
pharmaceuticals, functional materials, and synthetic inter-
mediates.1 Indeed, a number of drugs in therapeutic areas
such as inflammatory, diabetes,2 cancer,3 HIV,4 and neu-
rodegenerative (Alzheimer’s and Parkinson’s) diseases5

contain a sulfide functional moiety. Due to their broad
spectrum of pharmaceutical activity, organosulfur com-
pounds have triggered ever-increasing attention in the
synthetic and medicinal chemistry areas. Thiols, being the
simplest organic sulfur compounds, are not only manifest-
ed in natural products, but are also utilized in the synthesis
of valuable organosulfur compounds.6,7

The exploration of transition-metal catalysts for the con-
struction of carbon–sulfur bonds is of widespread interest
due to the growing need for versatile, mild, and selective
methods.8 However, in comparison to C–N and C–O bond
formation, the transition-metal-catalyzed construction of
C–S bond has been less studied due to the deactivation of
metal catalysts by the strongly coordinating sulfur com-
pounds.9 In recent years, iron-based catalysts have risen
notably in popularity for promotion of a wide range of or-
ganic transformations.10 The continued need for environ-
mentally benign organic transformations has also focused
on the replacement of volatile organic reaction media,
leading to the development of solvent-free reactions.11

Solvent-free conditions have many advantages12 and are
especially appealing as they provide the opportunity to

work in an open vessel, circumventing the risk of pressure
build up in a closed system.

In view of the above and as a part of our ongoing research
program,13 we report herein a rapid and solvent-free anhy-
drous FeCl3-catalyzed condensation of thiols and 1,3-di-
ones to afford thiol-substituted cyclohex-2-enones in
excellent yields (Scheme 1). In this regard, it is important
to note that 3-substituted 5,5-dimethylcyclohex-2-ene-1-
ones constitute an important class of agrochemicals.14

Further, there exists only one report for their synthesis in-
volving the solitary reaction of 4-methoxybenzyl mer-
captan with cyclohexan-1,3-dione in acetonitrile using
gold(III) catalysis.15

Scheme 1  Synthesis of thiol-substituted cyclohex-2-enones
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Table 1  Optimization of Reaction Conditions for 3aa

Entry Catalyst (mol%) Solvent Yield (%)

1 – – –

2 Zn(L-proline)2 (20) – 19

3 CAN (20) – 28

4 PTSA (20) – 51

5 AlCl3 (20) – 75

6 FeCl3 (20) – 80

7 FeCl2·4H2O (20) – –

8 FeCl3 (20) benzene 68

9 FeCl3 (20) MeCN 60

10 FeCl3 (20) DMF 50

11 FeCl3 (20) 1,4-dioxane 65

12 FeCl3 (20) CH2Cl2 69

13 FeCl3 (20) H2O 50

14 FeCl3 (20) EtOH n.r.b

15 FeCl3 (15) – 81

16 FeCl3 (10) – 71

a Conditions: 1a (1.2 mmol), 2a (1 mmol), r.t., 5 h.
b Compound 4a formed; n.r. = no reaction.
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In a preliminary trial, a model reaction using thiophenol
1a and dimedone 2a was carried out without a catalyst un-
der solvent-free conditions at room temperature, which
led to no coupled product (Table 1, entry 1). The reaction
was then examined using various catalysts under the same
conditions (Table 1, entries 2–7). Poor conversions were
observed using Zn(L-proline)2 and ceric ammonium
nitrate (CAN) (Table 1, entries 2 and 3). The use of
Brønsted acid (PTSA) produced the coupled product in
somewhat moderate yield (Table 1, entry 4). The best re-
sults were, however, obtained when Lewis acids were
used as catalyst; AlCl3 and FeCl3 produced the condensa-
tion product 3a in 75% and 80% yields, respectively (Ta-
ble 1, entries 5 and 6), although no product was observed
when FeCl2·4H2O was used as catalyst (Table 1, entry 7).
Consequently, FeCl3 was chosen as the best catalyst to
carry out further studies. To explore the effect of solvent,
the model reaction was studied in different solvents using
20 mol% of FeCl3 at room temperature (Table 1, entries
8–14), but none of them could match the efficacy of the

solvent-free conditions. When ethanol was used as a sol-
vent, it reacted preferentially to form product 4a. In terms
of catalyst concentration, 15 mol% of FeCl3 were found
sufficient to bring about the highest conversion (Table 1,
entry 15), as the reaction remained incomplete when 10
mol% of the catalyst was used (Table 1, entry 16).

Having the optimized conditions in hand, the scope of the
reaction was extended using a variety of thiols 1 and 1,3-di-
ones 2, and the outcome is summarized in Table 2. It is evi-
dent that both the aromatic as well as aliphatic thiols
participate well in the reaction. However, when 2-mercapto-
benzothiazole (1g) was employed, it did not work at all (Ta-
ble 2, entry 7) probably due to the lower nucleophilicity of
the thiol. With reference to the reactivity of cyclic-1,3-di-
ones, cyclohexan-1,3-dione (2b) afforded higher yields in
general compared to 2a. Other active methylene compounds
viz. acetylacetone and Meldrum’s acid were also tried but
they did not react (Table 2, entries 14 and 15).

Table 2  Reaction of Various Thiols with 1,3-Diones16 

Entry Thiol 1,3-Dione Product Time (h) Yield (%)a

1

1a
2a 3a

5 81

2

1b
2a 3b

5 85

3

1c
2a 3c

5 87

4

1d
2a 3d

5 80b

5

1e
2a 3e

4 97

6

1f
2a 3f

4 81
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In conclusion, we have developed an efficient and mild
protocol for the condensation of 1,3-dicarbonyl com-
pounds with thiols (aliphatic and aromatic) to afford thiol-

substituted cyclohex-2-enones in excellent yields. The
procedure uses FeCl3 as catalyst under solvent-free condi-
tions and may serve as a practical alternative to the exist-

7

1g
2a 3g

8 nrc

8

1a
2b 3h

4 80

9

1b
2b 3i

4 88

10

1c
2b 3j

4 89

11

1d
2b 3k

4 90b

12

1e
2b 3l

3.5 96

13

1f
2b 3m

3.5 92

14

1a 2c 3n

8 n.r.c

15

1a
2d 3o

8 n.r.c

a Isolated yield.
b Reaction at 50 °C.
c n.r. = no reaction.

Table 2  Reaction of Various Thiols with 1,3-Diones16  (continued)

Entry Thiol 1,3-Dione Product Time (h) Yield (%)a
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ing methods for the synthesis of agriculturally important
compounds.
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