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Electrophilic 1,2,3,4-tetrahydroacridin-9-yl trifluoromethane-
sulfonates have been prepared and applied for the first time
in the synthesis of functionalized tacrines with high efficacy
by using the Buchwald–Hartwig amination reaction. Re-
markably, secondary, poor nucleophilic, and functionalized
amines also reacted efficiently by using our conditions. The

Introduction

Nitrogen-containing heterocycles are key functional
components of many drugs and other biologically active
molecules. Tacrines, such as 1,2,3,4-tetrahydroacridine-9-
amine (tacrine: THA, 1), is arguably a key structural motif
in bioorganic chemistry, medicinal chemistry and drug dis-
covery (Figure 1).[1] However, THA (1) is not naturally oc-
curring and has therefore attracted interest as a target for
synthesis and further modifications.[2]

Figure 1. Structure of Tacrine (1), 9-chloro-1,2,3,4-tetrahydro-
acridine (2), and 6,9-dichloro-1,2,3,4-tetrahydroacridine (3).

Tacrine (Cognex®) was the first approved cholinesterase
inhibitor by the Food and Drug Administration agency in
1993 for the palliative treatment of Alzheimer diseases, re-
lated loss of memory and cognitive functions.[3] Owing to
its potent inhibition of acetylcholine esterase (AChE) and
butylcholinesterase (BuChE),[4] the chemical modification
of tacrine is of great interest for the development of
multipotent drugs prepared by conjugation of the THA
scaffold with other medicinally relevant groups.[5] Recently,
numerous multifunctional tacrine homo- and heterodimer
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versatility and convenience of these highly reactive deriva-
tives is illustrated through their application in other valuable
C–C (Sonogashira, Suzuki, and cyanation cross-coupling), C–
S, and C–O bond-forming reactions under palladium cataly-
sis.

co-drugs have been designed and synthesized with the aim
of enlarging and improving its pharmacological profile be-
yond its ability to serve as an AChE or BuChE inhibitor.[6]

In this context, the development of the multi-target-directed
ligand strategy requires reliable and selective synthetic
methods possessing broad substrate scope to assemble tac-
rines, and 1,2,3,4-tetrahydroacridines.[7] Traditional strate-
gies based on direct acylation or alkylation of poorly
nucleophilic 9-aminotacrine with appropriate electrophiles
usually suffer from restricted substrate scope and require
harsh and hazardous experimental conditions.[8,9] Alterna-
tively, functionalization of the 9-position can be effected
either by nucleophilic aromatic substitution (SNAr),[10] or
Buchwald–Hartwig amination (BHA)[11] of 9-chloro-
1,2,3,4-tetrahydroacridine (2, Figure 1). A significant
breakthrough has been recently disclosed by Renard and
co-workers, and by Carlier et al.[12] in the development of a
Pd-catalyzed amination reaction of 9-chloro-tetrahydro-
acridine (2) and 6,9-dichloro-1,2,3,4-tetrahydroacridine (3)
for the preparation of N-alkyltacrines (Figure 1, Scheme 1).

Scheme 1. Buchwald–Hartwig amination reactions of tetrahydro-
acridine derivatives 4–7.

Notwithstanding the efficiency of these recent accounts
for the cross-coupling of 2 and 3, a broadly applicable
method enabling the use of aromatic, heteroaromatic, sec-
ondary, non-nucleophilic nitrogen coupling partners, as well
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as functionalized amine-containing substrates, is still lack-
ing. Given the importance of the tacrine pharmacophore in
medicinal chemistry,[1–6] and in the framework of our syn-
thetic efforts towards medicinally relevant tacrine-hybrids
for the reactivation of phosphylated AChE,[13] we recog-
nized the need for tetrahydroacridine derivatives with en-
hanced electrophilicity for application in BHA. More highly
activated derivatives such as 9-bromo-, and 9-OTf-1,2,3,4-
tetrahydroacridines 5–7 could fulfill this requirement, re-
sulting in increased efficiency of the BHA reactions with a
wider scope of application (Scheme 1). Our specific interest
in the development of more reactive tetrahydroacridines 5–
7 for use in BHA is driven by the failure of 7,9-dichloro-
tetrahydroacridine (4) to react selectively and efficiently
with certain functionalized amines of interest during the
synthesis of tacrine hybrids by using the reported proto-
cols.[12] Herein we report the synthesis of 9-bromo-7-chloro-
1,2,3,4-tetrahydroacridine (5) and 1,2,3,4-tetrahydroacridin-
9-yl trifluoromethanesulfonates 6–7, and their use in the mi-
crowave-assisted Buchwald–Hartwig amination reaction
with various amines.

Results and Discussion

Prior to embarking on BHA reactions, our initial efforts
focused on the synthesis of 9-bromo-7-chloro-1,2,3,4-tetra-
hydroacridine (5), 1,2,3,4-tetrahydroacridin-9-yl trifluoro-
methanesulfonate (6) and 7-chloro-1,2,3,4-tetrahydroac-

Scheme 2. Substrate scope for the microwave-assisted Buchwald–Hartwig Amination reaction with 6 and 7 (isolated yields after column
chromatography are given, and conversion of starting triflates are given in brackets and were determined by 1H NMR spectroscopy).
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ridin-9-yl trifluoromethanesulfonate (7, Scheme 1). To this
end, 5 was obtained in modest unoptimized yield (23%) by
P(O)Br3-mediated cyclodehydration reaction of 5-chloro-
anthranilic acid with cyclohexanone.[14] With the aim of an-
alyzing the reactivity of 9-halo-tetrahydroacridines deriva-
tives in BHA reactions, the synthesis of 9-iodo-7-chloro-
1,2,3,4-tetrahydroacridine was initially considered. How-
ever, owing to the inefficiency of the reported procedure in
our hands,[15] our attention moved to the preparation of
acridin-9-yl trifluoromethanesulfonates. Accordingly, tetra-
hydroacridines 6 and 7 were prepared on a gram-scale in
78% and 87 % isolated yields, respectively, as stable white
crystalline solids from commercially available 1,2,3,4-tetra-
hydroacridin-9(10H)-one and 7-chloro-1,2,3,4-tetrahydro-
acridin-9(10H)-one (8), respectively.[16] With substrate 4[14]

and new electrophiles 5–7 in hand we next evaluated their
reactivity in the BHA reaction.

In an initial experiment the direct reactions of unprotec-
ted 1-amino-3-butyne, a bifunctional linker, and 1,2,3,4-
tetrahydroacridines 4–7 were explored. Four electrophiles
4–7 were reacted by using a modified BHA procedure, un-
der microwave irradiation in dioxane in the presence of a
tris(dibenzylideneacetone)dipalladium(0) [Pd2(dba)3] and
2,2�-bis(diphenylphosphino)-1,1�-binaphthalene [(�)-
BINAP] catalyst system, with Cs2CO3 as the base.[12] After
1.5 h of reaction at 130 °C, the conversion of starting elec-
trophiles 4–7 was determined by analyzing the crude reac-
tion mixtures by 1H NMR spectroscopy. Although the use



Job/Unit: O42122 /KAP1 Date: 17-04-14 18:18:04 Pages: 8

Synthesis of Functionalized 1,2,3,4-Tetrahydroacridine Derivatives

of chloride 4 resulted in moderate conversion (40–60%), we
were pleased to observe that bromide 5 and the analogous
triflate 7 underwent complete conversion (�99%) forming
the desired adduct 9 in excellent isolated yield (92 % and
85%, respectively) after column chromatography on silica
gel (Supporting Information and Scheme 2). In view of
these promising preliminary results, demonstrating the high
reactivity of triflate 7 combined with its ease of preparation,
the scope of the amination reaction was evaluated by using
additional selected amines. A brief survey of temperature
and reaction conditions, revealed that smooth arylation of
benzylamine in 1,4-dioxane with either 6 or 7 occurred at
100–130 °C after 1 h, to furnish benzylated tacrines 10 and
11 in quantitative yield (Scheme 2). Gratifyingly, exposure
of primary amines, such as n-butylamine, aniline, and bulky
1-aminopyrene, resulted in the formation of expected
alkylated tacrines 12–14 in excellent isolated yields
(Scheme 2), which constituted a substantial improvement
relative to previous reports that used chloride 4.[12]

Significantly, the method is compatible with both elec-
tron-rich and electron-poor anilines bearing a variety of
synthetically valuable functional groups (Scheme 2). In-
deed, 4-bromoaniline is suitable and cross-coupling product
15 was obtained selectively in excellent yield (91%), high-
lighting the high reactivity of triflate 7 in BHA reactions.
Electron-rich anilines, such as p-anisidine, exhibited good
reactivity and gave 16 in 65 % yield. Secondary cyclic
amines, such as pyrrolidine and piperidine, also underwent
coupling (87 and 54% for 17 and 18, respectively) under
otherwise identical reaction conditions. These results sug-
gest that the cross-coupling of 7 with secondary amines is
less sensitive to steric hindrance in contrast to previous re-

Scheme 3. Versatility of triflate 7 in C–C, C–S and C–O bond-forming reactions; THF = tetrahydrofuran.
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ports that used chloro derivative 4, in which cyclic second-
ary amines were inferior cross-coupling partners.[12a]

Attempts to further expand the scope of BHA to include
allylamine and propargylamine were fruitful and expected
adducts 19 and 20 were isolated in acceptable chemical
yields (64 and 76%, respectively). Notably, the use of a het-
eroaromatic nucleophile, such as 3-aminopyridine, also led
to cross-coupled product 21 in excellent isolated yield
(81 %). Other nitrogen nucleophiles, such as tert-butylsulfin-
amide, benzamide and diethyl phosphoramidate, also suc-
cessfully engaged in BHA reactions under our optimized
conditions. To our delight, the reactions displayed, unex-
pectedly, not only total conversion of reagent 7 but also a
high chemical efficiency; the sulfinylated, acylated and
phosphorylated tacrines were obtained in good to excellent
isolated yields (67, 76 and 87% for 22, 23 and 24, respec-
tively). Amine substrates containing additional functional
groups, such as 2-(2-aminothoxy)ethanol and glycine ethyl
ester, were also subjected to the Pd-catalyzed BHA reaction
with triflate 7 to give aminated adducts 25 and 26 in excel-
lent yields (96 and 92%, respectively).

It is noteworthy that total conversion of triflates 6 and 7
was observed for the majority of the reactions, with signifi-
cantly reduced reaction times and lower temperature.
Furthermore, lower quantities of reduced byproducts were
formed under BHA conditions by using the triflates; this is
a significant drawback of the existing BHA protocols which
use less reactive substrates, such as 2–4.[12] Besides these
features, a wide range of functionality was tolerated, includ-
ing unprotected alkynes, free alcohols, olefins, bromo- and
chloroarenes, ethers and ester groups. Additionally, in the
cross-coupling reactions, complete chemoselectivity of the
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triflate group versus the chloro substituent was always ob-
served. Consequently, this method provides efficient access
to new tacrine derivatives containing functionality suitable
for further potential ligation to a variety of other valuable
building blocks through Pd cross-coupling (9, 15, 19, 20),
click chemistry (9, 20), metathesis (19), thiol-ene reaction
(9, 19, 20), and ester- and amide-bond formation (25, 26).

To extend the scope of the cross-coupling methodology
to other 1,2,3,4-tetrahydroacridines, the application of tri-
flate 7 in other synthetically useful Pd-catalyzed C–C bond
forming reactions, such as Sonogashira, Suzuki, and cyan-
ation cross-couplings, was investigated (Scheme 3).

Sonogashira reaction of 7 with phenyl acetylene afforded
desired product 27 in excellent isolated yield (98%).[2a]

Furthermore, it was also possible to access 9-phenyltetra-
hydroacridine derivative 28 in 71% yield under Suzuki
cross-coupling conditions, along with a minor bisarylated
product (28 %) which resulted from secondary arylation of
the 7-chloro group. Synthetically valuable 9-CN-tetra-
hydroacridine derivative 29 was obtained in 75% yield
through cyanation of triflate 7 by using Zn(CN)2 under Pd-
catalysis in dry dimethylformamide (DMF), along with a
minor amount of biscyanated product (25%). Finally, we
explored C–S and C–O bond-formation by using thio-
phenol and benzyl alcohol, respectively. Gratifyingly, mer-
captotetrahydroacridine and benzyloxytetrahydroacridine
derivatives 30 and 31 were formed after 1 h under our opti-
mized microwave conditions in 83 and 60% yields, respec-
tively.

Conclusions

In summary, we have demonstrated 1,2,3,4-tetrahydro-
acridin-9-yl trifluoromethanesulfonates 6 and 7 to be supe-
rior substrates in Buchwald–Hartwig amination reactions,
which display broader substrate scope and applicability rel-
ative to previously employed 9-chloro derivatives. A variety
of amines (alkylamines, anilines, heteroarylamines) were
shown to react smoothly under microwave conditions to
give corresponding N-substituted tacrines in reasonable to
excellent yields. Even secondary and poorly nucleophilic
amines, such as tert-butylsulfinamide, benzamide and di-
ethyl phosphoramidate, were shown to react efficiently, and
functional groups, including terminal alkynes, alcohols,
bromo- and chloro-arenes, ethers, esters, and olefins, were
tolerated. Investigation of other Pd-catalyzed C–C, C–O
and C–S bond-forming reactions also show promise for the
development of practical routes to 9-substituted 1,2,3,4-
tetrahydroacridines, which extends the application of this
heterocycle in drug design.

Experimental Section
General Procedure A for the Palladium-Catalyzed Amination Reac-
tion under Microwave Irradiation: A microwave tube (0.5–2 mL)
containing a magnetic stirrer bar was charged with 1,2,3,4-tetra-
hydroacridine trifluoromethanesulfonate derivative (1 equiv.,
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0.137 mmol), Pd2(dba)3 (8 mg, 6 mol-%), (�)-BINAP (11 mg,
12 mol-%) and Cs2CO3 (2.5 equiv., 0.343 mmol). The vessel was se-
aled with a microwave septum and purged with argon. Degased
1,4-dioxane (1.7 mL) and amine (1–1.5 equiv.) were introduced
through the septum. The resulting mixture was heated by using a
Biotage® Initiator Microwave Synthesizer Apparatus to 130 °C for
1 h. After cooling, the reaction mixture was concentrated and puri-
fied by column chromatography.

N-(But-3-yn-1-yl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (9):
Following general procedure A, 1-amino-3-butyne (17 μL,
0.205 mmol) gave 9 as a yellow oil (31 mg, 80%). Rf (petroleum
ether/EtOAc/MeOH, 6:4:0.02) = 0.33. IR (neat): ν̃ = 3301, 2934,
2861, 1581, 1555, 1487, 1433, 1349, 1338, 1126 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 7.95 (d, J = 2.33 Hz, 1 H), 7.83 (d, J =
8.96 Hz, 1 H), 7.48 (dd, J = 2.24, 8.85 Hz, 1 H), 4.22 (t, J =
6.87 Hz, 1 H), 3.57 (q, J = 6.37 Hz, 2 H), 3.04 (t, J = 5.96 Hz, 2
H), 2.79 (t, J = 6.41 Hz, 2 H), 2.46 (dt, J = 2.68, 6.20 Hz, 2 H),
2.14 (t, J = 2.61 Hz, 1 H), 1.96–1.90 (m, 4 H) ppm. 13C NMR
(101 MHz, CDCl3): δ = 159.30, 149.21, 145.97, 130.67, 129.76,
129.25, 121.95, 121.72, 118.90, 81.63, 71.15, 47.53, 34.17, 24.84,
23.02, 22.82, 21.01 ppm. HRMS (ESI): calcd. for C17H17ClN2 [M
+ H]+ 285.1153; found 285.1159.

N-Benzyl-1,2,3,4-tetrahydroacridin-9-amine (10): Following general
procedure A, 1,2,3,4-tetrahydroacridin-9(10H)-one (50 mg,
0.151 mmol) and benzylamine (25 μL, 0.227 mmol) gave 10 as a
yellow oil (42 mg, 96%). Rf (petroleum ether/EtOAc/MeOH,
1:1:0.02) = 0.15. IR (neat): ν̃ = 3317, 3060, 2932, 2859, 1581, 1561,
1495, 1452, 1418, 1349, 1123, 1028 cm–1. 1H NMR (400 MHz,
CDCl3): δ = 7.96 (q, J = 8.64 Hz, 2 H), 7.57 (t, J = 7.58 Hz, 1 H),
7.39–7.30 (m, 6 H), 4.61 (s, 2 H), 4.15 (br. s, 1 H), 3.07 (t, J =
6.27 Hz, 2 H), 2.64 (t, J = 6.31 Hz, 2 H), 1.94–1.82 (m, 4 H) ppm.
13C NMR (101 MHz, CDCl3): δ = 159.93, 150.51, 147.77, 139.92,
129.09, 129.00 (2 C), 128.47, 127.86, 127.76 (2 C), 124.09, 122.88,
120.59, 117.12, 53.78, 34.29, 24.94, 23.14, 22.93 ppm. HRMS
(ESI): calcd. for C20H20N2 [M + H]+ 289.1699; found 289.1696.

N-Benzyl-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (11): Follow-
ing general procedure A, benzylamine (22 μL, 0.205 mmol) gave 11
as a yellow wax (44 mg, quant.). Rf (petroleum ether/EtOAc, 1:1)
= 0.23. IR (neat): ν̃ = 3065, 3028, 2930, 2859, 1580, 1554, 1484,
1452, 1427, 1346, 1118, 1078 cm–1. 1H NMR (400 MHz, CDCl3):
δ = 7.97 (d, J = 2.33 Hz, 1 H), 7.87 (d, J = 9.01 Hz, 1 H), 7.50 (dd,
J = 2.31, 9.01 Hz, 1 H), 7.39–7.28 (m, 5 H), 4.58 (s, 2 H), 4.11 (br.
s, 1 H), 3.04 (t, J = 6.37 Hz, 2 H), 2.59 (t, J = 6.31 Hz, 2 H),
1.92–1.81 (m, 4 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 159.18,
149.83, 146.04, 139.56, 130.62, 129.73, 129.36, 129.08 (2 C), 128.04,
127.81 (2 C), 122.18, 121.28, 117.99, 53.84, 34.12, 24.83, 22.98,
22.77 ppm. HRMS (ESI): calcd. for C20H19ClN2 [M + H]+

323.1310; found 323.1313.

N-Butyl-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (12): Following
general procedure A, n-butylamine (20 μL, 0.205 mmol) gave 12 as
a yellow oil (28 mg, 71 %). Rf (petroleum ether/EtOAc, 1:1) = 0.24.
IR (neat): ν̃ = 3339, 2927, 2860, 1578, 1556, 1487, 1431, 1359, 1263,
1115, 1081 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.93 (d, J =
2.32 Hz, 1 H), 7.82 (d, J = 9.03 Hz, 1 H), 7.47 (dd, J = 2.33,
9.01 Hz, 1 H), 3.87 (br. s, 1 H), 3.46 (t, J = 7.13 Hz, 2 H), 3.05–
3.01 (m, 2 H), 2.70–2.66 (m, 2 H), 1.93–1.89 (m, 4 H), 1.65 (quint,
J = 7.28 Hz, 2 H), 1.43 (sext, J = 7.39 Hz, 2 H), 0.96 (t, J =
7.32 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 158.96,
150.21, 146.11, 130.59, 129.22, 129.15, 122.25, 121.09, 116.84,
49.39, 34.17, 34.02, 24.84, 23.10, 22.84, 20.24, 13.99 ppm. HRMS
(ESI): calcd. for C17H21ClN [M + H]+ 289.1466; found 289.1462.
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N-Phenyl-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (13): Follow-
ing general procedure A, aniline (19 μL, 0.205 mmol) gave 13 as a
yellow solid (34 mg, 80%). Rf (petroleum ether/EtOAc, 7:3) = 0.39.
IR (neat): ν̃ = 3247, 3041, 2948, 2869, 1669, 1579, 1558, 1496, 1435,
1404, 1374, 1199, 1131 cm–1. 1H NMR (400 MHz, CDCl3): δ =
7.92 (d, J = 9.03 Hz, 1 H), 7.76 (d, J = 2.32 Hz, 1 H), 7.52 (dd, J

= 2.35, 9.01 Hz, 1 H), 7.24–7.19 (m, 2 H), 6.92 (t, J = 7.39 Hz, 1
H), 6.67 (d, J = 8.13 Hz, 2 H), 5.83 (br. s, 1 H), 3.13 (t, J = 6.51 Hz,
2 H), 2.72 (t, J = 6.42 Hz, 2 H), 2.00–1.80 (m, 4 H) ppm. 13C NMR
(101 MHz, CDCl3): δ = 160.50, 145.89, 144.30, 142.55, 130.99,
130.60, 129.70, 129.52 (2 C), 124.82, 124.24, 122.25, 121.05, 116.56
(2 C), 34.15, 25.61, 22.87, 22.70 ppm. HRMS (ESI): calcd. for
C19H17ClN2 [M + H]+ 309.1153; found 309.1151.

N-(Pyren-2-yl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (14): Fol-
lowing general procedure A, 1-aminopyrene (45 mg, 0.206 mmol)
gave 14 as a green solid (57 mg, 96%). Rf (petroleum ether/EtOAc,
8:2) = 0.14. IR (neat): ν̃ = 3361, 3037, 2920, 2853, 1601, 1551, 1512,
1482, 1466, 1370, 1333, 1272, 1089 cm–1. 1H NMR (500 MHz,
DMSO): δ = 8.86 (br. s, 1 H), 8.68 (d, J = 9.29 Hz, 1 H), 8.22–8.18
(m, 3 H), 8.09 (d, J = 2.27 Hz, 1 H), 8.04–7.99 (m, 3 H), 7.96–7.94
(m, 2 H), 7.66 (dd, J = 2.27, 9.13 Hz, 1 H), 6.96 (d, J = 8.60 Hz,
1 H), 3.08–3.04 (m, 2 H), 2.72–2.67 (m, 1 H), 2.35–2.31 (m, 1 H),
1.91–1.59 (m, 4 H) ppm. 13C NMR (125 MHz, DMSO): δ = 160.51,
145.60, 143.54, 139.59, 131.54, 131.21, 130.71, 129.40, 129.11,
127.44, 126.41, 126.06, 125.91, 125.33, 124.86, 124.77, 124.48,
124.45 (2 C), 124.30, 123.94, 122.40, 122.35, 119.56, 115.16, 33.46,
25.59, 22.31, 21.99 ppm. HRMS (ESI): calcd. for C29H21ClN2 [M
+ H]+ 433.1466; found 433.1475.

N-(4-Bromophenyl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (15):
Following general procedure A, 4-bromoaniline (24 mg,
0.137 mmol) was introduced before sealing the vessel and gave 15
as a bright yellow solid (48 mg, 91%). Rf (petroleum ether/EtOAc,
75:25) = 0.29. IR (neat): ν̃ = 3244, 3108, 2927, 2855, 1669, 1577,
1506, 1487, 1404, 1200, 1181, 1132 cm–1. 1H NMR (400 MHz,
CDCl3): δ = 8.48 (br. s, 1 H), 8.12 (d, J = 9.14 Hz, 1 H), 7.89 (d,
J = 4 Hz, 1 H), 7.52–7.49 (m, 3 H), 6.93 (d, J = 8.55 Hz, 2 H),
3.26 (t, J = 6.23 Hz, 2 H), 3.39 (t, J = 6.31 Hz, 2 H), 1.93–1.81 (m, 4
H) ppm. 13C NMR (101 MHz, CDCl3): δ = 155.33, 150.93, 139.53,
136.38, 133.24, 132.67, 132.60, 129.18, 128.37, 125.44, 123.84,
122.16, 119.92, 118.82, 117.80, 28.67, 26.30, 21.72, 20.60 ppm.
HRMS (ESI): calcd. for C19H16BrClN2 [M + H]+ 387.0257; found
387.0258.

N-(4-Methoxyphenyl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine
(16): Following general procedure A, p-anisidine (25 mg,
0.205 mmol) was introduced before sealing the vessel and gave 16
as a yellow solid (30 mg, 65%). Rf (petroleum ether/EtOAc, 75:25)
= 0.18. IR (neat): ν̃ = 3271, 3108, 2947, 2840, 1779, 1667, 1581,
1559, 1507, 1436, 1404, 1245, 1198, 1170, 1134 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 8.46 (br. s, 1 H), 7.95 (d, J = 9.03 Hz, 1
H), 7.69 (d, J = 2.12 Hz, 1 H), 7.49 (dd, J = 2.16, 8.93 Hz, 1 H),
6.97 (dd, J = 8.72, 69.25 Hz, 4 H), 3.82 (s, 3 H), 3.11 (t, J =
5.92 Hz, 2 H), 2.48 (t, J = 5.92 Hz, 2 H), 1.88–1.81 (m, 4 H) ppm.
13C NMR (101 MHz, CDCl3): δ = 159.09, 153.65, 152.26, 136.99,
133.57, 132.25, 131.74, 126.03 (2 C), 123.93, 122.19, 117.42, 115.30
(2 C), 114.59, 55.81, 28.50, 24.37, 21.73, 20.63 ppm. HRMS (ESI):
calcd. for C20H19ClN2O [M + H]+ 339.1259; found 339.1260.

7-Chloro-9-(pyrrolidin-1-yl)-1,2,3,4-tetrahydroacridine (17): Follow-
ing general procedure A, pyrrolidine (57 μL, 0.206 mmol) gave 17
as a pale yellow wax (34 mg, 87%). Rf (petroleum ether/EtOAc,
9:1) = 0.20. IR (neat): ν̃ = 2929, 2858, 1667, 1476, 1450, 1427, 1380,
1150, 1101 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89–7.87 (m,
2 H), 7.48 (dd, J = 2.33, 9.00 Hz, 1 H), 3.38 (t, J = 6.46 Hz, 4 H),
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3.09 (t, J = 6.63 Hz, 2 H), 2.81 (t, J = 6.32 Hz, 2 H), 2.15–2.08
(m, 4 H), 1.98–1.91 (m, 2 H), 1.87–1.81 (m, 2 H) ppm. 13C NMR
(101 MHz, CDCl3): δ = 160.77, 150.30, 146.29, 130.67, 130.59,
129.95, 129.08, 127.36, 123.02, 51.28 (2 C), 34.05, 26.62 (2 C),
26.57, 22.99 (2 C) ppm. HRMS (ESI): calcd. for C17H19ClN2 [M
+ H]+ 287.1310; found 287.1310.

7-Chloro-9-(piperidin-1-yl)-1,2,3,4-tetrahydroacridine (18): Follow-
ing general procedure A, piperidine (16 μL, 0.164 mmol) gave 18
as a colorless oil (22 mg, 54%). Rf (petroleum ether/EtOAc/MeOH,
9:1:0.02) = 0.32. IR (neat): ν̃ = 2932, 2854, 1567, 1479, 1450, 1428,
1388, 1099 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.09 (d, J =
2.36 Hz, 1 H), 7.86 (d, J = 8.89 Hz, 1 H), 7.49 (dd, J = 2.36,
8.92 Hz, 1 H), 3.23 (t, J = 5.02 Hz, 4 H), 3.09 (t, J = 6.69 Hz, 2
H), 2.90 (t, J = 6.37 Hz, 2 H), 1.96–1.89 (m, 2 H), 1.88–1.74 (m, 8
H) ppm. 13C NMR (101 MHz, CDCl3): δ = 160.80, 153.62, 146.26,
130.61, 130.40, 129.15, 128.23, 127.00, 123.29, 52.08 (2 C), 34.16,
27.11 (2 C), 27.07, 24.70, 23.11, 22.91 ppm. HRMS (ESI): calcd.
for C18H21ClN2 [M + H]+ 301.1466; found 301.1472.

N-Allyl-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (19): Following
general procedure A, allylamine (16 μL, 0.205 mmol) gave 19 as a
white powder (24 mg, 64%). Rf (petroleum ether/EtOAc, 1:1) =
0.16. IR (neat): ν̃ = 3290, 3089, 2945, 2871, 1669, 1584, 1519, 1417,
1349, 1325, 1199, 1176, 1131 cm–1. 1H NMR (400 MHz, CDCl3):
δ = 7.91 (d, J = 2.26 Hz, 1 H), 7.85 (d, J = 9.13 Hz, 1 H), 7.48 (dd,
J = 2.49, 8.92 Hz, 1 H), 6.05–5.95 (m, 1 H), 5.38 (dd, J = 1.51,
17.03 Hz, 1 H), 5.24 (dd, J = 1.30, 10.26 Hz, 1 H), 4.05 (d, J =
5.43 Hz, 2 H), 3.97 (br. s, 1 H), 3.06–3.03 (m, 2 H), 2.74–2.70 (m,
2 H), 1.95–1.89 (m, 4 H) ppm. 13C NMR (101 MHz, CDCl3): δ =
159.03, 149.89, 145.92, 135.62, 130.53, 129.66, 129.36, 122.11,
121.22, 117.71, 117.36, 51.90, 34.09, 24.86, 23.04, 22.80 ppm.
HRMS (ESI): calcd. for C16H17ClN2 [M + H]+ 273.1153; found
273.1146.

N-(Prop-2-yn-1-yl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (20):
Following general procedure A, propargylamine (10 μL,
0.151 mmol) gave 20 as a white solid (28 mg, 76%). Rf (petroleum
ether/EtOAc, 1:1) = 0.19. IR (neat): ν̃ = 3292, 3112, 2943, 2874,
1669, 1583, 1567, 1517, 1417, 1338, 1199, 1177, 1130 cm–1. 1H
NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 2.11 Hz, 1 H), 8.14 (d,
J = 9.18 Hz, 1 H), 7.61 (dd, J = 2.18, 9.02 Hz, 1 H), 6.61 (br. s, 1
H), 4.58–4.56 (m, 2 H), 3.19 (t, J = 6.20 Hz, 2 H), 2.76 (t, J =
5.57 Hz, 2 H), 2.55 (t, J = 2.45 Hz, 1 H), 1.94–1.87 (m, 4 H) ppm.
13C NMR (101 MHz, CDCl3): δ = 154.23, 153.58, 137.09, 133.33,
132.08, 123.05, 122.60, 117.25, 113.19, 78.62, 75.22, 37.58, 28.48,
24.07, 21.90, 20.63 ppm. HRMS (ESI): calcd. for C16H15ClN2 [M
+ H]+ 271.0996; found 271.0991.

N-(Pyridin-3-yl)-7-chloro-1,2,3,4-tetrahydroacridin-9-amine (21):
Following general procedure A, 3-aminopyridine (19 mg,
0.206 mmol) gave 21 as a yellow solid (34 mg, 81%). Rf (petroleum
ether/EtOAc, 6:4) = 0.30. IR (neat): ν̃ = 3229, 3088, 2935, 2863,
1586, 1557, 1480, 1374, 1286, 1240, 1111, 1092 cm–1. 1H NMR
(400 MHz, CDCl3): δ = 8.18–8.15 (m, 2 H), 7.93 (d, J = 9.08 Hz,
1 H), 7.73 (d, J = 2.30 Hz, 1 H), 7.54 (dd, J = 2.19, 8.95 Hz, 1 H),
7.12–7.08 (m, 1 H), 6.81–6.78 (m, 1 H), 6.02 (br. s, 1 H), 3.13 (t, J

= 6.49 Hz, 2 H), 2.71 (t, J = 6.43 Hz, 2 H), 1.99–1.92 (m, 2 H),
1.87–1.81 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 160.72,
145.93, 141.90, 141.19, 140.90, 138.64, 131.56, 130.84, 129.96,
125.84, 124.30, 123.92, 121.99, 121.81, 34.13, 25.75, 22.80,
22.60 ppm. HRMS (ESI): calcd. for C18H16ClN3 [M + H]+

310.1105; found 310.1101.

N-(7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)-2-methylpropane-2-sulf-
inamide (22): Following general procedure A, 2-methyl-2-propane-
sulfinamide (25 mg, 0.206 mmol) gave 22 as a pale yellow solid
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(31 mg, 67 %). Rf (petroleum ether/EtOAc/MeOH, 75:25:0.02) =
0.10. IR (neat): ν̃ = 3353, 3242, 2932, 2864, 2004, 1650, 1573, 1491,
1445, 1375, 1031 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.83 (d,
J = 9.15 Hz, 1 H), 7.68 (d, J = 2.36 Hz, 1 H), 7.49 (dd, J = 2.17,
8.94 Hz, 1 H), 4.68 (br. s, 1 H), 3.01 (t, J = 5.93 Hz, 2 H), 2.61 (t,
J = 6.05 Hz, 2 H), 1.99–1.90 (m, 4 H), 1.23 (s, 9 H) ppm. 13C NMR
(101 MHz, CDCl3): δ = 158.64, 146.36, 144.46, 130.01, 129.60,
129.53, 119.41, 117.81, 111.20, 55.53, 34.74, 23.81, 22.74, 22.71,
22.26 (3 C) ppm. HRMS (ESI): calcd. for C17H21ClN2OS [M +
H]+ 337.1136; found 337.1136.

N-(7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)benzamide (23): Follow-
ing general procedure A, benzamide (25 mg, 0.206 mmol) gave 23
as a white solid (35 mg, 76%). Rf (petroleum ether/EtOAc/MeOH,
6:4:0.02) = 0.38. IR (neat): ν̃ = 3248, 2934, 2862, 1649, 1590, 1511,
1482, 1282, 1082 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.01 (d,
J = 7.57 Hz, 2 H), 7.94 (d, J = 9.06 Hz, 2 H), 7.77 (d, J = 2.40 Hz,
1 H), 7.67–7.61 (m, 1 H), 7.58–7.52 (m, 3 H), 3.14 (t, J = 6.55 Hz,
2 H), 2.87 (t, J = 6.54 Hz, 2 H), 2.01–1.95 (m, 2 H), 1.90–1.83 (m, 2
H) ppm. 13C NMR (101 MHz, CDCl3): δ = 165.94, 160.47, 145.40,
137.77, 133.44, 132.72, 132.11, 130.11, 129.95, 129.13 (2 C), 128.98,
127.69 (2 C), 124.97, 121.31, 34.07, 25.79, 22.73, 22.43 ppm.
HRMS (ESI): calcd. for C20H17ClN2O [M + H]+ 337.1102; found
337.1101.

Diethyl (7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)phosphoramide
(24): Following general procedure A, diethyl phosphoramidate
(32 mg, 0.206 mmol) gave 24 as a pale white solid (44 mg, 87 %).
Rf (petroleum ether/EtOAc/MeOH, 1:1:0.02) = 0.31. IR (neat): ν̃ =
3083, 2979, 2931, 2861, 1584, 1549, 1501, 1482, 1389, 1362, 1235,
1203, 1165, 1091, 1033 cm–1. 1H NMR (400 MHz, CDCl3): δ =
8.24 (d, J = 2.08 Hz, 1 H), 7.87 (d, J = 8.91 Hz, 1 H), 7.54–7.51
(m, 1 H), 4.87 (br. s, 1 H), 4.20–4.10 (m, 4 H), 3.11–3.00 (m, 4 H),
1.98–1.86 (m, 4 H), 1.36–1.27 (m, 6 H) ppm. 13C NMR (101 MHz,
CDCl3): δ = 160.36, 145.56, 131.40, 130.28, 129.74 (2 C), 127.32,
125.42, 122.58, 63.82, 63.76, 34.13, 25.69, 22.71 (2 C), 16.34,
16.27 ppm. 31P NMR (162 MHz, CDCl3): δ = 2.95 ppm. HRMS
(ESI): calcd. for C17H22ClN2O3P [M + H]+ 369.1129; found
369.1133.

2-{2-[(7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)amino]ethoxy}ethan-
1-ol (25): Following general procedure A, 2-(2-aminoethoxy)ethan-
1-ol (21 μL, 0.206 mmol) gave 25 as a pale white solid (42 mg,
96%). Rf (EtOAc/MeOH, 97:3) = 0.16. IR (neat): ν̃ = 3346, 2931,
2861, 1645, 1580, 1558, 1488, 1436, 1341, 1258, 1156, 1117, 1071,
1030 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 2.24 Hz,
1 H), 7.84 (d, J = 8.91 Hz, 1 H), 7.48 (dd, J = 2.20, 9.03 Hz, 1 H),
5.48 (br. s, 1 H), 4.63 (br. s, 1 H), 3.83–3.81 (m, 2 H), 3.63–3.60
(m, 6 H), 3.05–3.02 (m, 2 H), 2.76–2.73 (m, 2 H), 1.93–1.88 (m, 4
H) ppm. 13C NMR (101 MHz, CDCl3): δ = 158.07, 150.68, 129.97
(2 C), 129.24, 122.22, 120.91, 117.72, 72.41, 70.31, 61.97, 48.65,
33.18, 24.58, 22.84, 22.52 ppm. HRMS (ESI): calcd. for
C17H21ClN2O2 [M + H]+ 321.1364; found 321.1361.

Ethyl (7-Chloro-1,2,3,4-tetrahydroacridin-9-yl)glycinate (26): Fol-
lowing general procedure A, glycine ethyl ester hydrochloride
(29 mg, 0.206 mmol) and triethylamine (29 μL, 0.206 mmol) gave
26 as a pale yellow oil (40 mg, 92%). Rf (petroleum ether/EtOAc/
MeOH, 6:4:0.02) = 0.29. IR (neat): ν̃ = 3386, 2980, 2935, 2862,
1736, 1582, 1557, 1487, 1435, 1373, 1339, 1210, 1161, 1023 cm–1.
1H NMR (400 MHz, CDCl3): δ = 7.87 (d, J = 2.35 Hz, 1 H), 7.83
(d, J = 8.87 Hz, 1 H), 7.47 (dd, J = 2.30, 9.09 Hz, 1 H), 4.86 (t, J

= 5.04 Hz, 1 H), 4.24 (q, J = 7.17 Hz, 2 H), 4.19 (d, J = 4.94 Hz,
2 H), 3.04–3.01 (m, 2 H), 2.86–2.83 (m, 2 H), 1.92–1.88 (m, 4 H),
1.28 (t, J = 7.15 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ =
171.58, 159.22, 149.42, 145.91, 130.66, 129.65, 129.26, 121.81,
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120.82, 117.77, 62.01, 50.34, 34.11, 24.63, 22.95, 22.76, 14.26 ppm.
HRMS (ESI): calcd. for C17H19ClN2O2 [M + H]+ 319.1208; found
319.1210.

Supporting Information (see footnote on the first page of this arti-
cle): Procedures for the synthesis of original compounds are given.
1H and 13C NMR spectra are also reported.
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Buchwald–Hartwig Amination Approach
for the Synthesis of Functionalized 1,2,3,4-
Tetrahydroacridine Derivatives

Electrophilic 1,2,3,4-tetrahydroacridin-9-yl high efficacy by using the Buchwald–Hart-
trifluoromethanesulfonates have been pre- wig amination reaction. Secondary, poor Keywords: Synthetic methods / Cross-cou-
pared and applied for the first time in the nucleophilic, and functionalized amines are pling / Amination / Nitrogen heterocycles /
synthesis of functionalized tacrines with well tolerated. Medicinal chemistry / Tacrines

www.eurjoc.org © 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 0000, 0–08


