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O N  A N  A P P R O A C H  T O  T H E  A P P R O X I M A T I O N  O F  A S O L U T I O N  O F  

P R O B L E M S  F O R  T H E  H E A T - C O N D U C T I O N  E Q U A T I O N  W I T H O U T  
B O U N D A R Y - V A L U E  O R  I N I T I A L  C O N D I T I O N S  

L. I. D e m c h e n k o  a n d  V. F.  D e m c h e n k o  UDC 517.549 

We propose an approach to the approximation of solutions of problems for the heat-conduction equation 
without initial or boundary-value conditions. The solution is given as a sum of odd and even functions, 
and this allows one to reconstruct conditions missed in the initial setting of the problem. The method is 
illustrated with test examples. Bibliography: 1 title. 

1. SETTING OF THE PROBLEM 

The process of heat conduction along a closed bar is a well-known example of a problem for the 
heat-conduction equation without boundary-value conditions. Similar problems also arise in the numerical 
integTation of multidimensional heat equations in cylindrical or spherical coordinates if economical difference 
schemes (the locally one-dimensional Samarskii scheme, Peaceman-Raeckford scheme, etc.) are used. At 
the same time, in conducting thermal physics studies, there appears a need to solve problems for heat 
conduction equations without initial conditions. Most often such problems are related to determining the 
temperature field in a solid due to certain external factors being periodic in time, e.g., a periodic heat 
source that  works for an extended period of time. It does not mat te r  what the initial temperature is, 
the heat-conduction process "forgets" it as time passes, which means tha t  the periodic temperature  field is 
formed only by the boundary conditions and the energy sources. In this article, we give a common approach 
to both problems to reconstruct the conditions missed in the initial sett ing of the problem. 

2. PROBLEMS WITHOUT INITIAL CONDITIONS 

In a domain i2 with a boundary F, we consider a linear parabolic-type equation: 

cOu 
0----[ = Lu,  �9 E ~; Lu = div(kgTadu) - qu + f ,  t > - c o ,  (1) 

where �9 = { xi,  i = 1 , . . . ,  n } are spatial coordinates, t is time; k = k(2, t), q = q(2, t), and f = f(~', t). On 
the boundary F, the function u(~, t) satisfies linear boundary-value conditions of the first kind: 

ulr = t), t > s e r, (2) 

(the second- and third-type boundary-value problems can be considered in a similar way). 
We state the problem as follows: for t > 0, find a function u(2, t) t ha t  satisfies Eq. (1) and boundary- 

value conditions (2). Vv:e assume that  the data of tile problem (the coefficients in Eq. (1) and the function 
~(s, t)) are defined in certain classes of functions for which the existence and uniqueness of a solution in the 
classical sense holds. It is worthwhile to make a remark coming from physics: one can assume that  certain 
initial conditions for Eq. (1) are given at t = - o c  and, after an infinite period of time, -c<) < t < 0, they 
cease to be important for the current heat state at time t > 0. 

We represent the solution of the problem as a sum of fimctions u+(2,  t) and u - ( 2 ,  t), which are even 
mid odd with respect to the arg~mmnt t, u(2, t) -- u+(2, t) + u - ( 2 ,  t); we also represent the operator L 
as a sum of operators, L = L + + L - ,  where L + and L -  are operators such that  for any even and odd 
functions g+(x, t) and g - ( x , t ) ,  respectively, we have L+g + and L - g -  are even functions of t and L + g  - 
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and L - g  + are odd. This can be done if the  coefficients k, q, and  f of the operator  L are wri t ten as 
z(2 ,  t) = z+(~2, t) q - z - ( ~ , t ) ,  where z (2 ,  t) is one of the  functions k = k(2,  t), q = q(~ , t ) ,  and f -- f ( ~ , t ) .  
Consider an auxiliary system 

Ou + O u -  
-L+u + + L  u ZERO, (3) Ot = L + u -  + L - u + '  Ot 

with boundary-value conditions 

= p + ( s , t ) ,  - -  p - ( s , t ) ,  (4) 

where p+(s ,  t) q- p - ( s ,  t) = p(s ,  t). 
Let the  functions u+(~, t) and u - ( Z ,  t) satisfy Eq. (3) and boundary-value conditions (4). Then  the 

function u(:~, t) satisfies Eq. (1) and boundary-va lue  conditions (2), and it is a solution of the problem for 
t > 0. Consider the time grid ~ = { tk = kT, k --~ 0, 1, 2 , . . .  }, and introduce the  following notation: Yk(~) 
are values of the function y on the ~ i d  at  the  m o m e n t  t -- tk; y~ is the time difference derivative of the 
function y(2). We use the Rote scheme for sys tem (3): 

y+ = L+y  - + L - y  +, y~- = L+y + + L - y - ,  ~ E f~, (5) 

where y+ (2) = y+(2) and y- (~)  = y~-(~) are discrete analogues of the  functions u + (2, t) and u - ( 2 ,  t) at 
the moment  t -- tk. Further, we use the  following properties of even and odd functions: 

r t=0 Ot = 0; = 0.  

Then Yo = 0 and yl + = y+ up to O(r2).  Let us use these approximat ion  properties in (5) for k = 0. We 
get the following system of two equations: 

L+y7 + L - y ?  = 0, y~ = r ( L + y ?  + L - y F ) .  (6) 

Solving system (6) with the boundary-value  conditions Y+]r ~- ~2+(s, r) and Yl-lr = 9~-(s, T), we find 
the grid functions y+ and Yl. In this way we reconst ruct  the initial conditions for a solution of system (1) 
for t > 7, since u(~, 0) ~ y+ q- Yo = Y+. 

System (6) is of elliptic type and can be solved by using the grid method.  The  Rote method used above 
suggests tha t  one apply the implicit difference scheme for the integrat ion of problem (1), (2). From this 
point of view, the calculation consumption for reconstructing the  initial conditions by solving system (6) 
using the grid method  is not bttrdensome, since the  number  of operat ions  is equivalent to one step in solving 
Eq. (1) using the implicit difference scheme. 

To illustrate the method discussed, let us give several test examples.  

E x a m p l e  1. Find a solution of the equat ion ut = 0 . 5 u ~  for 0 < x ~ 1 and t > 0 under  the boundary-value 
conditions u(0, t) = t and u(1, t) = 1 + t. 

According to the above method,  we rewri te  sys tem (3) and bounda~ ' -value  conditions (4) as 

Ou + Oeu - Ou-  02u  + 

Ot Ox e ' Ot Ox 2 ' 
u + ( o , t )  = o,  = 1; = t ,  = t .  

To reconstruct  the initial conditions in this example ,  we can avoid the approximation of the operator  on 
the spatial grid. Thus, in place of (5), similarly to  the Rote method ,  we write, instead of (5), the system of 
difference equations in the following form: 

y l  + - y 0  + 1 0 2 u  - y i - - y o  1 0 %  + 
r = ~, Ox -----y;  r = ~ Ox----y; 0 < x < 1, 
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with  add i t iona l  condit ions cor responding  to the s y m m e t r y  and an t i - symmet ry  of the  functions u + (x, t) and  
u -  (x, t),  respect ively ,  

= y o ( X )  = 0.  

Then  Yx-x = 0 and  y~ (x) = C l x  + C2. The  cons tan ts  C1 and C2 are de te rmined  from the  b o u n d a r y  
condit ions for the  funct ion u - ( x ,  t) at  t = T: y~-(0) -- T, y~-(1) ---- r ;  hence y ~ ( x )  = T and the equat ion  for 

+ 
the  funct ion y+  can be wr i t ten  as Y~x,1 -- 2. Integxat ing this equat ion wi th  the  boundary-value  condit ions 

y+ (0) = 0 and  y+ (1) = 1, we find the  solution y+ (x) = x 2. Thus,  we recons t ruc t  the  initial condi t ion for 

the  f lmction u(x ,  t) in the form y ( z ,  O) -- y+ + Yo = z2" 
To e s t i m a t e  the  accuracy of  the  obta ined  solut ion,  define at  t -- - 1 0 0  an initial condit ion by 

u ( - 1 0 0 ,  x) = 0, 0 < x < 1, 

and solve the  p rob lem under  considera t ion by using the  finite-difference m e t h o d  on the  t ime interval - 1 0 0  _< 
t _< 0 by app ly ing  the  implicit th ree -node  scheme. Since the Fottrier number  Fo tha t  corresponds to  the  
t ime interval  equal  to 100, is much  ~ e a t e r  t han  one (Fo = 200), we believe t ha t  a t  t -- -100 ,  the solut ion of 
the problem does  not  depend on the  initial condi t ion given at t = - 1 0 0 .  In numerical  calculations, we used 
a gxid wi th  20 spat ia l  nodes and the  step ~- = 1 for the  t ime variable. T h e  numerical  experiments  showed 
tha t  the re la t ive  error  between the  initial condi t ions determined by the  above me thod  and the  funct ion 
y(x ,  0) = x 2 is 1 .4517 .10  - s  for.all  nodes of the spat ia l  grid. 

E x a m p l e  2. F i n d  a solution of  the  equat ion ut --- ux~ on the interval  (0, 1) for t > 0 with the following 
bounda ry  condi t ions:  u(0, t) = 0, u(1,  t) = A sin a t .  

According to  the  above methods ,  the funct ion t h a t  recovers the initial condit ions for this example  is 

y(x ,  O) -- (x 3 - x) A sin a r  (7) 
T 

To e s t i m a t e  the  accuracy of  this  solution, s imilar ly to the first example ,  the  finite-difference m e t h o d  
was used on  t he  t ime interval - 2 0 0  < t < 0 wi th  A = 1000 and the  initial condit ion u ( x , - 2 0 0 )  --- 0, 
0 < t < 1. T h e  obta ined  solut ion was compared  wi th  (7). The  following gxid parameters  were chosen: 
T -- 0.0065 a n d  h -- 0.05. Table  1 shows values of relat ive errors z(x)  = I(y(x) - u (x ) ) / y (x ) l  at  inter ior  
nodes of the  gxid for different values of the pa r ame te r  ~, which corresponds  to the  frequency of the  per iodic  
t e m p e r a t u r e  change  in the boundary-va lue  condi t ion at  x = 1. 

TABLE 1. Rela t ive  Recons t ruc t ion  Er ror  for the Initial  Condi t ions  

x 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

a --- 0, 1 a = 0 ,2  a = 0 ,4  a = 0,8 

1.9552- 1 0  - 4  7.8216- 10 -4 3.1294- 10  - 3  1.2531 �9 10 -2 

1 .9247 .10  -4 7 .6987 .10  -4 3 .0802 .10  - 3  1.2332- 10 -2 

1.8739- 10 -4 7 .4959 .10  -4 2 .9989 .10  - 3  1 .2004 .10  - 2  

1.8039- 10 -4 7.2159- 10 -4 2.8867- 10  - 3  1 .1552 .10  -2 

6 .8629 .10  -4 2 .7452 .10  - 3  1 .0982 .10  -2 1.7157- 10 -4 

1.6105- 10 -4  

1 .4899 .10  -4  

1 .3557 .10  -4 

1 .2102 .10  -4  

6.4419- 10 -4 2.5765- 10  - 3  1 .0302 .10  -~- 

5.9593- 10 -4 2 .3832 .10  - 3  0 . 9524 .10  -2 

5 .4225 .10  -a  2 .1682 .10  - 3  0 . 8660 .10  -2 

4 . 8 4 . 1 0  -4 1 .9350.10 -3 0 .7724 .10  - 2  
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This numerical e.xperiment shows that,  similarly to Example 1, a sufficiently high reconstruction accu- 
racy is reached for the initial condition, although, if the  oscillation frequency of the  boundary  tempera ture  
increases, the  accuracy of the method decreases. 

The approach suggested for the reconstruction of initial conditions can easily be  ex-tended to the  heat- 
conduction equation with an operator Lu of a more general form, including the  equat ion for conduction- 
convection energy transport.  

3. THE PROBLEM WITHOUT BOUNDARY-VALUE CONDITIONS 

For the  equation 

c-~ = L~, Lu = ~ \ 0 t  ] - q~ + / '  t > 0, (S) 

where c = c(x, t), k = k(x, t), q = q(x, t), and f = f ( x ,  t) on the segment x E [0, 1], find a flmction u(x ,  t) 
satisfying the  initial condition 

~(5 ,  0) = ~0 (~ ) ,  5 e [0,1], (9) 

and the following periodicity condition: 

u ( x , t ) = u ( x + l , t ) ,  for a l l 5 e [ 0 , 1 ] ,  t > 0 .  (10) 

Suppose problem (8)-(10) has a unique classical solution. We look for the flmction u(x,  t) in the form of a 
sum of even and odd functions with respect to the argument x: u(2, t) = u+(2, t) + u+(2,  t). 

Consider the system of equations 

+ Ou + On- L+u+ c ~ + c - ~  = + L - u - ,  
ot (11) 

Ou + c+ On- 
c-  -~  + Ot - L + u -  + L - u + '  

where the  operators L + and L-  are defined in such a way that for all g+(x , t )  and g - ( x , t )  (the even 
and odd functions, respectively), L+9 + and L - g -  are even and L+g - and L - g  + are odd flmctions of the  
argxlment x: 

L+g = -~x k+ - q+9 + f ~ ,  L - g  = ~ \ Ox]  - q - g  + f - "  

Here c, k, q, and f ,  with indices (+) and ( - ) ,  are even (+) and odd ( - )  components  of the functions 
c(z, t), k(:~, t), q(z, t), and f(x, t). 

2'o Eq. (11), we add the initial conditions 

~+ (x, 0) = ~;~ (5),  ~ -  (z,  0) = ~ o  (5), 0 < 5 < 1, (1_o) 

where C2o+(X) + ~o(X) = ~0(x). Let us determine the boundary-value conditions for the functions u+(x,  t) 
and u - ( x ,  t) using the properties of even and odd flmctions as well as condition (10) that  the solution is 
periodic: 

~ _ ~ ~=~ = o; u - ( o , t )  = u - ( t .  t) = o. (13) 
Ox x=o 05 

Hence initial conditions (12) and boundaa'y-value conditions (13) are completely defined for system (11), 
so that  a solution of this problem can be obtained in both  analytical and numerical ways, for example, using 
the finite-element method in numerical calculations. If the coefficients of an equation are varying, then  the 
above approach for solving problem without boundary-value conditions is not aal al ternative to the cyclic 
sweep method  [1], since it requires the integration of a system of two heat-conduction equations. However, 
it can be useful to determine the boundary-value conditions at the stage of setting up the problem to find 
then a solution of the problem with the help of another  numerical or anal~ical  method.  
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