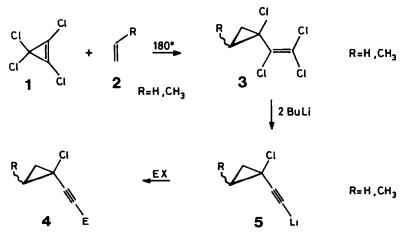
## NEW VERSATILE C<sub>5</sub> BUILDING BLOCKS FROM ETHYLENE AND TETRACHLOROCYCLOPROPENE<sup>[\*\*]</sup>


Thomas Liese, Gisela Splettstoßer and Armin de Meizere 🔭

Institut fur Organische Chemie und Biochemie der Universitat Hamburg Martin-Luther-King-Platz 6, 2000 Hamburg 13, W.-Germany

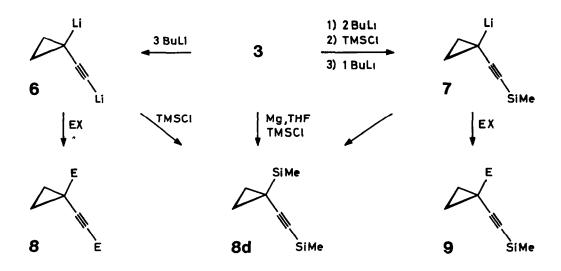
<u>Summary</u>: The perchlorovinylcarbene adducts of ethylene and propylene served as precursors to a wide spectrum of 1'-substituted cyclopropylacetylenes 4, 8 and 9, which are versatile polyfunctional molecules. E.g., the acetylenic ester 4c underwent cycloaddition to 1,3-dienes giving otherwise unaccessible compounds.

As we have demonstrated earlier, tetrachlorocyclopropene (1) is an efficient source for tetrachlorovinylcarbene, which can be trapped intermolecularly by olefins to give 1-chloro-1-(trichlorovinyl)cyclopropanes in good to very good yields<sup>[1]</sup>. Single step transformations of these adducts give rise to synthetically useful vinylcyclopropanes<sup>[1]</sup>, alkynylcyclopropanes<sup>[2]</sup> and esters of methylenecyclopropane carboxylic acids<sup>[3]</sup>. The application of this methodology to ethylene and propylene creates interesting new C<sub>5</sub> and C<sub>6</sub> functional molecules which can serve as versatile building blocks in organic synthesis.

The reactions of ethylene (2 [R = H]) and propylene (2 [R = CH<sub>3</sub>]) with 1 were carried out in a 300 ml MONEL sampling cylinder. Tenfold ex-



3341


cesses of the gaseous olefins were condensed into the cylinder which had been charged with tetrachlorocyclopropene (1), tetrachloroethylene as a solvent and sodium bicarbonate as a hydrogen chloride scavenger. The vinylcyclopropanes 3 (R = H, CH<sub>3</sub>) were isolated by distillation in 63% and 50% yield, respectively. The lithium acetylides 5 generated from 3 by metalation<sup>[2]</sup> with 2 equivalents of butyl lithium were reacted with various electrophiles to give the corresponding (1-chlorocyclopropyl)acetylene derivatives 4 (R = H, CH<sub>3</sub>) (see table 1).

| Educt            | EX                   | Product (E)[a]                   | Yıeld [%] | Isolation <sup>[b]</sup> |
|------------------|----------------------|----------------------------------|-----------|--------------------------|
| <b>3</b> (R = H) | Н <sub>2</sub> 0     | 44аа (Н)                         | 91        | A                        |
| <b>3</b> (R = H) | CO2                  | <b>441</b> ы (СО <sub>2</sub> Н) | 84        | В                        |
| <b>3</b> (R = H) | C1C0 <sub>2</sub> Me | <b>4с</b> (СО <sub>2</sub> Ме)   | 95        | С                        |
| <b>3</b> (R = H) | Me <sub>3</sub> SiCl | 44dd (SıMe <sub>3</sub> )        | 78        | D                        |
| $3(R = CH_3)$    | C1C0 <sub>2</sub> Me | äuee (CO₂Me)                     | 59        | С                        |

Table 1. (1-Chlorocyclopropyl)acetylene derivatives 4 from 3 via 5.

[a] All new compounds were fully characterized by spectroscopical methods (see table 3). [b] A Distillation, B Recrystallization, C Kugelrohr-distillation, D: Prep. GC.

Metalation of 3 (R = H) with 3 equivalents of BuLi gave the diamon 6, which upon electrophilic substitution yielded difunctional cyclopropylacetylenes of type 8 (e.g. 8d, E = SiMe<sub>3</sub>, 62%). The bistrimethylsilyl compound 8d could be obtained more conveniently by heating 3 with magnesium in tetrahydrofurane in the presence of TMSC1 (62% GC-isolated yield).



3342

Further metalation of **4d** with subsequent electrophilic substitution opens the way to difunctional cyclopropylacetylenes **9** and others with almost any desirable combination of functional groups. The same objective could be achieved with a four step-one pot procedure metalation of **3** (2 eq. BuLi), addition of TMSCl (1 mol), metalation (1 eq. BuLi) and reaction with an electrophile, e.g. iodine gave **9f** (E = I) in 69% isolated yield.

Several of these cyclopropylacetylenes are valuable substrates for catalyzed <sup>[4]</sup> or uncatalyzed cycloaddition reactions. For instance the methyl 3-[1'-chlorocyclopropyl]propiolate 4c (R = H) is a reasonably reactive dienophile. Its thermal reactions with various 1,3-dienes yielded [2+4]-cycloadducts, some of which underwent subsequent aromatization. E.g. 10 and 11 were obtained with cyclopentadiene and 1,3-cyclohexadiene respectively, addition to 1-methoxy-3-trimethylsiloxybutadiene occured with pronounced regioselectivity to give, after acidic work-up, the aromatic product 12 (see table 2).

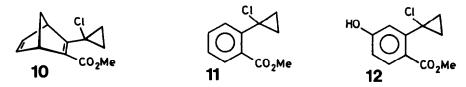



Table 2. Cycloaddition products of methyl 3-[1'-chlorocyclopropyl]propiolate 4c to various 1,3-dienes.

| Product <sup>[a</sup> | A]Yıeld [%] | Properties        | Reaction<br>conditions | Isolation[b] |
|-----------------------|-------------|-------------------|------------------------|--------------|
| 10                    | 90          | colourl. liq.     | 80-90°C, 3 h           | EE/PE 1 20   |
| 11                    | 49          | colourl. lıq.     | 150°C, 24 h            | EE/PE 1.20   |
| 12                    | 63          | eryst. m.p. 121°C | 90°C, 24 h             | EE/PE 7 3[c] |

[a] Characterized by spectroscopic methods (see table 3).

[b] Chromatography on silica gel, EE = diethyl ether, PE = petrolether,[c] After treatment with HCl/MeOH.

The chemistry presented here once more demonstrates the synthetic utility of small functional molecules containing a cyclopropyl group in combination with a multiple bond system<sup>[5]</sup>.

Table 3. 270 MHz-<sup>1</sup>H-NMR (6 values, TMS int.) and IR spectroscopic data of all new compounds.

**4a**, NMR (CDCl<sub>3</sub>): 1.33(m, 4H), 2.40(s, 1H). - IR (CDCl<sub>3</sub>). 3310(vH-C≡), 3100, 3010(vH-C<sub>cyclopr</sub>.), 2120, 2090(vC≡C). 4c, NMR (CDCl<sub>3</sub>): 1.46(m, 2H), 1.52(m, 2H), 3.78(s, 3H). - IR (KBr) · 2220  $(vC \equiv C)$ , 1710(vC = 0), 1220(vC - 0). #dd, NMR (CDCl<sub>3</sub>) · 0.16(s, 9H), 1.31(m, 4H). - IR (f1lm): 3090, 3010(vH- $C_{\text{evclopr.}}$ ), 2160( $\nu$ CEC). 4e, NMR (CDCl<sub>3</sub>): 0.87 - 0.96(m, rel. int. 3), 1.00 - 1.05(m, rel. int. 1), 1.27 - 1.36(m, 9), 1.55 - 1.61(m, 4), 1.94 - 2.06(m, 2), 3.79, 3.80(2s, 6). - IR (film) · 2220(vCEC), 1710(vC=0). 8d, NMR (CDCl<sub>3</sub>): 0.03(s, 9H), 0.10(s, 9H), 0.66(m, 2H), 0.93(m, 2H). -IR (film). 3100, 3010(vH-C<sub>evelopr</sub>), 2160(vC=C). 9f, NMR (CDCl<sub>3</sub>, 60 MHz): 0.20(s, 9H), 1.40(m, 4H). - IR (film) · 2160(vC≡C). **10**, NMR (CDCl<sub>3</sub>): 1.14(m, 2H), 1.39(m, 2H), 2.07(AB, 2H,  ${}^{3}J_{AB} = 6.6$  Hz), 3.75(m, 1H), 3.80(s, 3H), 3.94(m, 1H),  $6.84(m, 2H, {}^{3}J_{5-H, 6-H} = 7.8 Hz)$ . - IR (film): 1710(vC=0), 1625(vC=C).**11**, NMR (CDCl<sub>3</sub>): 1.24(m, 2H), 1.49(m, 2H), 3.97(s, 3H), 7.32(dt, 1H,  ${}^{3}J$  = 7.2 Hz,  ${}^{4}J$  = 1.4 Hz), 7.45(dt, 1H,  ${}^{3}J$  = 7.2 Hz,  ${}^{4}J$  = 1.4 Hz), 7.55(m, 1H,  ${}^{3}$ J = 7.2 Hz,  ${}^{4}$ J = 1.4 Hz), 7.75(m, 1H,  ${}^{3}$ J = 7.2 Hz,  ${}^{4}$ J = 1.4 Hz). - IR (film): 1720(vC=0). 12, NMR (d<sub>6</sub>-acetone): 1.26(m, 2H), 1.41(m, 2H), 3.75(s, 3H), 6.64(ABX, 1H,  ${}^{3}J_{AB} = 8.4 \text{ Hz}, {}^{4}J_{AX} = 2.4 \text{ Hz}), 6.82(d(AX), 1H, {}^{4}J_{AX} = 2.4 \text{ Hz}), 7.51(d(AB),$ 1H,  ${}^{3}J_{AR} = 8.4 \text{ Hz}$ , 8.87(s, 1H). - IR (KBr): 3350(v0-H), 1700(vC=0).

- [\*\*] This work was supported by the Stiftung Volkswagenwerk, the Fonds der Chemischen Industrie and the Hoechst AG.
- [1] W. Weber, A. de Meijere, <u>Angew. Chem.</u> 92, 135 (1980); <u>Angew. Chem.</u> <u>Int. Ed. Engl.</u> 19, 138 (1980).
- [2] Th. Liese, A. de Meijere, <u>Angew. Chem.</u> 94, 65 (1982), <u>Angew. Chem.</u> <u>Int. Ed. Engl.</u> 21, 65 (1982).
- [3] Th. Liese, G. Splettstoßer, A. de Meijere, <u>Angew. Chem.</u> 94, in press (1982), <u>Angew. Chem. Int. Ed. Engl.</u> 94, in press (1982).
- [4] Work in progress in collaboration with Prof. U. Schuchardt, University of Campinas, Sao Paulo, Brazil.
- [5] For further examples see: A. de Meijere, <u>Angew. Chem.</u> 91, 867 (1979); <u>Angew. Chem. Int. Ed. Engl.</u> 18, 809 (1979) and ref. cited therein. (Received in Germany 3 May 1982)