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Introduction

Hypervalent iodine(III) reagents have been known for over 
a century, but these compounds have only recently been 
applied extensively in many important organic transforma-
tions.1–3 Diaryl ethers are common structural features in 
numerous biologically active compounds and natural prod-
ucts, some of which are potential drugs. Numerous meth-
ods have been developed to synthesize diaryl ethers, and 
new routes for a wide range of biologically active com-
pounds have been devised.4–8 Heterocyclic aromatic ethers 
are likely to exhibit higher potent biological activity than 
the corresponding diphenyl ethers. However, many of the 
reported methods for the synthesis of heterocyclic aromatic 
ethers have limited efficiency.9 In this study, we report a 
concise and efficient method for the preparation of trivalent 

iodine compounds 4–6, and the application of these com-
pounds for the construction of aromatic ethers.

Results and discussion

In our laboratory, we developed an efficient and inexpensive 
method for preparing diacetoxyiodoarenes10–12 in ideal yields 
from corresponding iodoarenes with sodium perborate 
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tetrahydrate.13 The optimized method for the preparation of 
diacetoxyiodoarenes from iodoarenes is described in section 
“Experimental” (Scheme 1).

The ortho-iodo aromatic ethers can be synthesized 
smoothly from the corresponding phenols with the diace-
toxyiodoarenes. In particular, the 4-pyridone also could 

be oxidized to ortho-iodo aromatic ethers via diacetoxyi-
odoarenes. The detail experiment of the preparation of 
aromatic ethers is described in section “Experimental” 
(Scheme 2).

A possible mechanism for the construction of diacetox-
yiodoarenes has been proposed based on the experimental 

Scheme 2.  Construction of aromatic ethers.

Scheme 1.  Preparation of diacetoxyiodoarenes.
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results (Scheme 3). The starting material is oxidized to  
an unstable intermediate iodosyl benzene a, which then 
reacts with acetic anhydride to form intermediate b. 
Intramolecular rearrangement then yields the diacetoxyio-
doarenes. Infrared spectroscopy and UV-Vis light spec-
troscopy data showed that all of the diacetoxyiodoarenes 
existed in virtually ionic form.13

Based on the experiment results and previous reports,14 
a possible mechanism for the formation of heterocyclic aro-
matic ethers is shown in Scheme 4. Initially, the lone pair of 
the hydroxy group attacks the iodine of the diacetoxyio-
doarene, which loses an acetic acid to form intermediate c. 
Intramolecular electrophilic aromatic substitution with loss 
of an acetate anion then yields cation d. Next, aromatiza-
tion forms the relatively stable intermediate e, and a subse-
quent shift of the phenyl group from iodine to oxygen then 
yields the heterocyclic aromatic ether.

Conclusion

In this work, we report an efficient method for synthesis of 
diacetoxyiodoarenes via intramolecular rearrangement, and 
three diacetoxyiodoarenes were prepared smoothly via this 
method. Then, the front freshly prepared compounds are 
used to oxidize some phenols, and the corresponding six 
diaryl ethers and three heterocyclic aromatic ethers are syn-
thesized in good yields. Both of the possible mechanisms of 
preparing diacetoxyiodoarenes and constructing diaryl 
ethers are proposed.

Experimental

All chemical reagents were obtained from commercial sup-
pliers (Aldrich, Tokyo Chemical Industry (TCI), Aladdin, 
Macklin, and Bidepharm Pure Chemical Industries) and 

Scheme 3.  Possible mechanism for the construction of the diacetoxyiodoarenes.

Scheme 4.  A possible mechanism for the formation of heterocyclic aromatic ethers.
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were used without further purification. Anhydrous solvents 
were obtained via standard protocols. All non-aqueous 
reactions were carried out under an Ar atmosphere. Thin-
layer chromatography (TLC) was performed on silica gel 
60 F254 glass plates precoated with a 0.25-mm thickness of 
silica gel (Yantai Jiangyou). Column chromatography was 
carried out on Cica Silica Gel 60N (spherical, neutral, 40–
50 μm or 63–210 μm). 1H and 13C NMR spectra were 
obtained on a Varian UNITY plus 300 (300 MHz for 1H and 
75 MHz for 13C) instrument, with CDCl3 as the solvent an 
d internal reference. IR spectra were measured on a JNM 
FTIR-460 Plus spectrometer. Mass spectra were recorded 
on JEOL D-200, JEOL JMS-GCmate II, SHIMAZU 
GC-MS-QP 500, or JEOL AX 505 spectrometers. Melting 
points were recorded with a Yanagimoto micro melting 
point apparatus and are uncorrected.

Optimized method for the preparation of 
diacetoxyiodoarenes from iodoarenes

NaBO3·4H2O (10 mmol) was slowly added portionwise 
over 30 min to a stirred solution of iodoarene 1 (1 mmol) in 
Ac2O (1.5 mL) and AcOH (99.5%, 1.5 mL) under Ar at 
55 °C. The mixture was stirred at 55 °C until the starting 
material had disappeared completely (as confirmed by TLC 
analysis). Water (20 mL) was added and the reaction mix-
ture was stirred at room temperature for 30 min. A consider-
able amount of solid precipitates was observed. The solid 
was separated by filtration, washed with water (2 5 mL), 
and dried under air at room atmosphere. The filtrate was 
extracted with EtOAc (3  10 mL). And the combined extracts 
were dried over anhydrous MgSO4 and filtered. The solvent 
was evaporated under reduced pressure. The combined 
crude products were purified by recrystallization from a 
mixture of AcOH/H2O (1:1).

General procedure for the preparation of 
aromatic ethers

A mixture of 4-pyridone or substrate 10–12 (100 mg) and 
freshly prepared diacetoxyiodoarene (5 equiv.) in MeOH 
(5 mL) was refluxed for 4–8 h. The reaction mixture was 
quenched with saturated NaCl (10 mL) and extracted with 
ethyl acetate (3 × 10 mL). The organic layers were com-
bined, dried over MgSO4, and concentrated under vacuum. 
The residue was purified by column chromatography on 
silica gel to afford the desired product.

Diacetoxyiodobenzene (4).  Yield: 91%; white solid; m.p. 
161–163 °C (lit.15161.2–162.2 °C). 1H NMR (300 MHz, 
CDCl3): δ 1.98 (6 H, s), 7.46 (2 H, d, J = 7.6 Hz), 7.58 (1 H, 
td, J = 7.6 Hz, J = 1.1 Hz), 8.08 (2 H, dd, J = 7.6 Hz, J = 1.1 Hz); 
13C NMR (75 MHz, CDCl3): δ 20.18 (q), 20.18 (q), 121.38 
(s), 130.77 (d), 131.59 (d), 134.76 (d), 176.19 (s).

p-(Diacetoxyiodo)toluene (5).  Yield: 89%; white solid; 
m.p. 109–110 °C. 1H NMR (300 MHz, CDCl3): δ 1.97 (6 H, 
s), 2.40 (s, 3 H), 7.27 (2 H, d, J = 8.1 Hz), 7.95 (2 H, d, 
J = 8.1 Hz); 13C NMR (75 MHz, CDCl3): δ 20.7 (q), 21.6 
(q), 119.2 (s), 131.8 (d), 134.5 (d), 142.8 (s), 176.3 (s). IR 

(KBr, cm−1): 3385, 3321, 2261, 1631, 1441, 1385, 1193; 
MS-ES: m/z = 336 (M+); HRMS-ES: m/z [M]+ calcd for 
C11H13IO4: 335.9859; found: 335.9849.

o-(Diacetoxyiodo)toluene (6).  Yield: 92%; white solid; 
m.p. 100–102 °C. 1H NMR (300 MHz, CDCl3): δ 1.98 (6 H, 
s), 2.72 (3 H, s), 7.22-7.28 (1 H, m), 7.50-7.52 (2 H, m), 
8.16 (1 H, d, J = 7.42 Hz); 13C NMR (75 MHz, CDCl3): δ 
20.13 (q), 25.39 (q), 126.83 (s), 128.05 (d), 130.49 (d), 
132.37 (d), 136.82 (d), 140.20 (s), 175.94 (s). IR (neat, 
cm−1) 3435, 1649, 1614, 1367, 1293, 1011, 764, 669; 
MS-ES: m/z = 336 (M+); HRMS-ES: m/z [M]+ calcd for 
C11H13IO4: 335.9859; found: 335.9851.

Iodo-4-phenoxypyridine (7).  Yield: 94%; colorless oil. 1H 
NMR (300 MHz, CDCl3): δ 6.56 (1H, d, J = 5.77 Hz), 7.09-
7.12 (2 H, m), 7.25-7.31 (1 H, m), 7.41-7.48 (2 H, m), 8.29 
(1 H, d, J = 5.77 Hz), 8.86 (1 H, s); 13C NMR (75 MHz, 
CDCl3): δ 85.38 (s), 111.01 (d), 120.65 (d), 125.73 (d), 
130.18 (d), 150.36 (d), 153.66 (s), 158.43 (d), 163.74 (s); 
IR (neat, cm−1): 3038, 2360, 1562, 1464, 1397, 1270, 1199, 
882; MS-ES: m/z = 297 (M+); HRMS-ES: m/z [M]+ calcd 
for C11H8INO: 296.9651; found: 296.9652.

3-Iodo-4-(p-tolyloxy)pyridine (8).  Yield: 91%; colorless 
oil. 1H NMR (300 MHz, CDCl3): δ 2.37 (3 H, s), 6.53 (1 H, 
d, J = 5.77 Hz), 6.97 (2 H, d, J = 9.52 Hz), 7.20 (2 H, d, 
J = 9.52 Hz), 8.25 (1 H, d, J = 5.77 Hz), 8.83 (1 H, s); 13C 
NMR (75 MHz, CDCl3): δ 20.92 (q), 85.15 (s), 110.69 (d), 
120.46 (d), 130.44 (d), 135.44 (s), 150.25 (d), 151.28 (s), 
158.25 (d), 163.93 (s); IR (neat, cm−1): 3034, 1567, 1504, 
1462, 1271, 1201, 1016, 885; MS-ES: m/z = 311 (M+); 
HRMS-ES: m/z [M]+ calcd for C12H10INO: 310.9807; 
found: 310.9799.

3-Iodo-4-(o-tolyloxy)pyridine (9).  Yield: 95%; colorless 
oil. 1H NMR (300 MHz, CDCl3): δ 2.16 (3 H, s), 6.41 (1 H, 
d, J = 5.49 Hz), 7.03 (1 H, d, J = 7.69 Hz), 7.19-7.32 (4 H, 
m), 8.28 (1 H, d, J = 5.77 Hz), 8.86 (1 H, s); 13C NMR 
(75 MHz, CDCl3): δ 16.07 (q), 84.64 (s), 109.89 (d), 121.14 
(d), 126.19 (d), 127.55 (d), 130.26 (s), 131.87 (d), 150.12 
(d), 151.54 (s), 157.96 (d), 163.42 (s); IR (neat, cm−1): 
3035, 2360, 1563, 1464, 1271, 1181, 888; MS-ES: m/z = 311 
(M+); HRMS-ES: m/z [M]+ calcd for C12H10INO: 310.9807; 
found: 310.9791.

Methyl 3-iodo-4-(p-tolyloxy)benzoate (13).  Yield: 85%; 
colorless oil. 1H NMR (300 MHz, CDCl3): δ 2.36 (3 H, s), 
3.90 (3 H, s), 6.72 (1 H, d, J = 8.52 Hz), 6.95 (2 H, d, 
J = 7.97 Hz), 7.19 (2 H, d, J = 7.97 Hz), 7.89 (1 H, dd, 
J = 8.52, 1.92 Hz), 8.52 (1 H, d, J = 1.92 Hz); 13C NMR 
(75 MHz, CDCl3): δ 20.91 (q), 52.26 (q), 86.48 (s), 115.82 
(d), 119.80 (d), 125.85 (s), 130.47 (d), 131.06 (d), 134.49 
(s), 141.25 (d), 152.91 (s), 161.12 (s), 165.13 (s); IR (neat, 
cm−1) 2863, 1720, 1588, 1505, 1477, 1433, 1253; MS-ES: 
m/z = 368 (M+); HRMS-ES: m/z [M]+ calcd for C15H13IO3: 
367.9909; found: 367.9909.

Methyl 5-iodo-2-methoxy-4-(p-tolyloxy)benzoate (14).  
Yield: 91%; white solid; m.p. 77–79 °C. 1H NMR (300 MHz, 
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CDCl3): δ 2.36 (3 H, s), 3.69 (3 H, s), 3.87 (3 H, s), 6.35 (1 
H, s), 6.94 (2 H, d, J = 8.52 Hz), 7.19 (2 H, d, J = 8.52 Hz), 
8.30 (1 H, s); 13C NMR (75 MHz, CDCl3): δ 20.91 (q), 
52.08 (q), 56.18 (q), 75.09 (s), 101.54 (d), 116.12 (s), 
119.36 (d), 130.46 (d), 134.28 (s), 142.43 (d), 152.98 (s), 
161.10 (s), 161.31 (s), 164.50 (s); IR (neat, cm−1): 2948, 
1687, 1588, 1505, 1438, 1276, 1103, 834; MS-ES: m/z = 398 
(M+); HRMS-ES: m/z [M]+ calcd for C16H15IO4: 398.0015; 
found: 398.0010.

2-iodo-4-nitro-1-(p-tolyloxy)benzene (15).  Yield: 79%; 
colorless oil. 1H NMR (300 MHz, CDCl3): δ 2.39 (3 H, s), 
6.71 (1 H, d, J = 9.07 Hz), 6.98 (2 H, d, J = 8.52 Hz), 7.24 (2 
H, d, J = 8.52 Hz), 8.10 (1 H, dd, J = 9.07, 2.75 Hz), 8.73 (1 
H, d, J = 2.75 Hz); 13C NMR (75 MHz, CDCl3): δ 20.97 (q), 
85.66 (s), 114.63 (d), 120.22 (d), 125.13 (d), 130.77 (d), 
135.33 (d), 135.51 (s), 142.66 (s), 152.17 (s), 162.78 (s); IR 
(neat, cm−1): 3093, 2923, 1576, 1518, 1465, 1342, 1260893; 
MS-ES: m/z = 355 (M+); HRMS-ES: m/z [M]+ calcd for 
C13H10INO3: 354.9706; found: 354.9713.

Methyl 3-iodo-4-(o-tolyloxy)benzoate (16).  Yield: 89%; 
colorless oil. 1H NMR (300 MHz, CDCl3): δ 2.19 (3 H, s), 
3.90 (3 H, s), 6.54 (1H, d, J = 8.79 Hz), 6.97 (1 H, d, 
J = 7.69 Hz), 7.14-7.31 (3 H, m), 7.87 (1 H, dd, J = 8.79, 
1.92 Hz), 8.54 (1 H, d, J = 1.92 Hz); 13C NMR (75 MHz, 
CDCl3): δ 16.25 (q), 52.25 (q), 85.67 (s), 114.38 (d), 120.56 
(d), 125.38 (d), 125.54 (s), 127.38 (d), 130.10 (s), 131.15 
(d), 131.74 (d), 141.30 (d), 152.90 (s), 160.57 (s), 165.15 
(s); IR (neat, cm−1): 2950, 2360, 1720, 1581, 1478, 1433, 
1283, 1252, 1111; MS-ES: m/z = 368 (M+); HRMS-ES: m/z 
[M]+ calcd for C15H13IO3: 367.9909; found: 367.9910.

Methyl 5-iodo-2-methoxy-4-(o-tolyloxy)benzoate (17).  
Yield: 86%; colorless oil. 1H NMR (300 MHz, CDCl3): δ 
2.21 (3 H, s), 3.65 (3 H, s), 3.87 (3 H, s), 6.18 (1 H, s), 6.94 
(1 H, d, J = 7.97 Hz), 7.12-7.31 (3 H, m), 8.32 (1 H, s); 13C 
NMR (75 MHz, CDCl3): δ 16.28 (q), 52.05 (q), 56.11 (q), 
74.27 (s), 100.07 (d), 115.65 (s), 119.99 (d), 125.23 (d), 
127.32 (d), 129.86 (s), 131.72 (d), 142.50 (d), 152.87 (s), 
160.91 (s), 161.25 (s), 164.48 (s); IR (neat, cm−1): 2949, 
2360, 1731, 1592, 1488, 1244, 1093, 781; MS-ES: m/z = 398 
(M+); HRMS-ES: m/z [M]+ calcd for C16H15IO4: 398.0015; 
found: 398.0010.

2-iodo-4-nitro-1-(o-tolyloxy)benzene (18).  Yield: 85%; 
colorless oil. 1H NMR (300 MHz, CDCl3): δ 2.17 (3 H, s), 
6.54 (1 H, d, J = 9.07 Hz), 7.01 (1 H, d, J = 7.69 Hz), 7.19-
7.34 (3 H, m), 8.09 (1 H, dd, J = 9.07, 2.75 Hz), 8.75 (1 H, 
d, J = 2.75 Hz); 13C NMR (75 MHz, CDCl3): δ 16.13 (q), 
85.03 (s), 113.45 (d), 120.90 (d), 125.25 (d), 126.15 (d), 

127.67 (d), 130.13 (s), 131.98 (d), 135.39 (d), 142.56 (s), 
152.32 (s), 162.06 (s); IR (neat, cm−1): 3093, 2359, 1574, 
1518, 1462, 1341, 1258, 745; MS-ES: m/z = 355 (M+); 
HRMS-ES: m/z [M]+ calcd for C13H10INO3: 354.9705; 
found: 354.9713.
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