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Abstract: Alkoxy allylic zirconium reagents, prepared from acet& of a,tWttsaturated a&i&y&s and 
“Cp$Y, react with carbonyl compounds to give 1 &diols or rhydroxy aldehyde derivatives. 

Diastereoselective addition reactions of ralkoxy allylic organometallics to carbonyl compounds are an 
ideal means for the construction of allylic 1,2-dials, important building blocks for natural products 
synthesis. 
metals.1 

Reactivity and diastemoselectivity of these reagents have been studied using many kinds of 
Another useful oxygen functiotmlll allyhc metal is an a-alkoxy a.llylii metal reagent which may 

possibly be an important homoenolate anion equivalent of aklehyde. Generation and reactions of this anion 
have been studied over the past 10 years. 2 We recently developed a new method for generating allylic and 
allenic/propargylic zirconium reagents by reactions of allylic ethers or propargylic ethers with xirconocene 
equivalent (“Cp2w)3 via the elimination of the alkoxyl group at the g-position of zirconacycles.4 In 
continuing our work, we found that alkoxy allyllc zirconium reagents could be prepared from the acetals of 
o,&unsaturated aklehydes. This paper presents the method for this pmpamtion along with dlastemoselective 
reactions of r_alkoxy allylic zirconium reagents with aldehydes and ketones and spectral evidence for the 
Q-ralkoxy allylic zirconium intermediate. Generation of a- or ralkoxy allylic xitconium was found to be 
highly dependent on the substitution pat&m of the starting acetals of a#-unsaturated aldehyde. 
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Reactions of allylic zirconium reagents derived from au&in ethylene acetal (Entries l-10) and diethyl 
acetal (Entries 11-18) with carbonyl compounds are summarized in Table 1. Reaction of the in situ 
generated allylic zirconium reagent prepared from acrolein ethylene acetal with benxaldehyde pmceeded 
smoothly to give a mixture of diastemomers in 70% yield favoring the unri-allylic 1 &ho1 derivatlve (Entry 
1). Reactions with aliphadc aldehyde, however, proceeded slowly (Entries 3.5.13 and 15). To improve 
the yield, reactions were can-led out ln the presence of BF#EtZ with significantly positive effect. It is of 
interest to note that in the BF3*0Et2-catalyzed reaction, the syn-allylic 13diol derivative became the 
preferred isomer (Entries 2,4,6.8,12,14 and 16)s In the case of the a&unsaturated aldehyde, selective 
1,Zaddltion occurred (Entries 7 and 8). These reagents also reacted with ketone in the presence of 
BFyOEtz to give 1.2-dial derivatives (Entrles 10 and 18). 
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Table 1. Reactions of FAlkoxy Allylic zirconium Reagents with Carbonyl Compounds. 
Entry Substrate Carbonyl Compound Lewis acida Yield (%)b syn vs antFd 
i 

-3 0 

PhcHo A B 70 82 71:29 35 : 65 

3 cy-HexylCHO A 40 13 : 87 
4 B 61 67 : 33 
5 j3-Phenylpropionaldehyde A _- e ________ 

6 B 59 67 : 33 
7 Cinnamaldehyde A 52 40:60 
8 B 71 69: 31 

9 
10 
11 
12 
13 
14 
15 
16 
17 

9 0 OEt 
OEt 

DiHh$kt3OlE A -_ e 
B 60 

PhCHO A 80 
B 72 

cy-HexylCHO A 59 
B 85 

&Phenylpropionaldehyde A ___ e 

B 84 
Diethyllcetone A -_ e 

________ 
________ 

57 : 43 
78 : 22 
14 : 86 
77 : 23 
______- 

68 : 32 
________ 

18 B 43 ________ 
a) A: No Legs acid wzs used B: 1.3 eq. of Bk@Etz was used. b) Isolated yeld. C) Rafio was 
&temined by 300 MHz IH-NMR. d) Relative stereochemistries were determined as described in reference 
6. e) A complex mixture. 

A ralkoxy allylic zirconium intermediate would thus appear present, assuming addition of the 
aldehyde to proceed through the S,l pathway. The intermediary of r_allcoxy allylic zirconium reagent was 
confzmed by an NMR experiment (vi& i&z). 

In the case of prenylaldehyde ethylene acetal, following acidic workup, the rlactol derivative derived 
from rhydroxy aldehyde derivative was obtained as the sole product (Scheme 2).7 The allylic zirconium 
species would thus appear to function as a homoenolate anion of aldehyde. Similar reactivity of the allylic 
zirconium derived from cinnamaldehyde ethylene acetal was also observed and the intermediate fmation of 
the enol ether derivative was confirmed by isolating the enol ether derivative under neutral wokup as shown 
in Scheme 2.8 One possible explanation is that steric repulsion between substituents and bulky zirconium 
metal transfers zirconium to a less hindered site in the ally1 unit to give a-akoxy allylic zirconium, which 
subsequently reacts with aklehyde through SE’ pathway (Scheme 3). 

&JHO] JrH 
OH 

b 61% 
h syn-E 45.0% anti-E 3.8% 

syn-Z 8.8% anti-2 42.4% 
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NMR studies (IH, 13C, and NOE experiment) on the in situ generated organozirconlum intermediate 

“Cp2Zr” 

prepared from acrolein diethyl acetal and “C!p$r” clearly indicated the (Z)+thoxy allylic zirconium 
intermediate to exist. Each chemical shift of lH-(400 MHz) and l3C-( 100.6 MHz) NMR and NOE spectra 
in benzene-d6 am shown in Scheme 4.9 

17%NOi 4.99 

Ett) i!rCp20Et 
k 6.0 

‘H-NMR chemical shift (ppm) S&me4 

116 

c 111 
13C-NIvIR chemical shift (ppm) 

Two olefinic hydrogens at 4.99 ppm (dt, J=6.1,9.1 Hz, B-H) and 5.84 ppm (dt, J=6.1, 1.2 Hz, T_H) 
in the lH-NMR spectrum of in situ generated intermediate demonstrated the presence of the Z-enol ether 
system. The stereochemistry of the intermediate was further confinned by significant NOE correlation 
(17%) between two olefmic hydrogens. The presence of two ethoxy signals in ~H-(CHZ = 3.94 and 3.71 
ppm, CH3 = 1.29 and 1.10 ppm) and 13C-(CH2 = 69 and 67 ppm. CH3 = 20 and 16 ppm) NMR spectra 
also support the structure in Scheme 4. ‘Ihe in sifu generated active species is thus clearly shown to be Q- 
y~thoxy allylic zirconium. It should be pointed out that the organozitconium intermediate exists mainly as 
the Z-stereoisomer as indicated by NMR analysis. 10 Although direct evidence could not be obtained by 
NMR study, the ether oxygen is most likely coordinated to the zhconium from our earlier studies.11 

The reactions of zirconium intermediate with aldehydes may 
P 

roceed through diffemnt transition states 
in the absence/presence of BF+Et2 (SEr boat like transition state 2 or SE2 open chain transition state). 
Typical experimental procedure. 

Under an argon atmosphere, a solution of acetal(O.65 mmol) in toluene (2 ml) was added to a solution 
of in situ generated Cp$r(nBu)213 (0.78 mmol) in toluene at -78 ‘C! and the reaction temperatum was raised 
to room temperature and stirred for 3 h. To the reaction mixture was added a solution of carbonyl 
compounds (and BFs=OEtz) in toluene (2 ml) at -78 ‘C followed by stirring at the same tempemture for 3 h. 
1N HCl was then added and the mixture was extracted with dichloromethane. After the usual workup, the 
residue obtained was purified by silica gel column chromatography to give a diastereomeric mixture of 
products. 
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