SYNTHESIS OF CHIRAL 2-METHYL-3-ALKENOIC ESTERS VIA 1,2-REARRANGEMENT OF ALKENYL GROUP¹⁾

Yutaka HONDA, Aiichiro ORI, and Gen-ichi TSUCHIHASHI^{*} Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223

Hydrolysis of optically pure 1-alkenyl-2-sulfonyloxy-1-propanone acetals afforded optically and geometrically pure title compounds *via* stereospecific 1,2-rearrangement of alkenyl group.

We have already reported² that hydrolysis of optically active 1-aryl-2sulfonyloxy-1-propanone acetals (<u>1</u>) afforded 2-arylpropanoic esters (<u>2</u>) v_{ia} 1,2rearrangement of the aryl group with complete inversion of configuration on the carbon atom. The reaction is considered to involve the transition state illustrated in Eq. 1 (Z=aryl).

If this stereospecific rearrangement can be applied to a variety of substrates, it will present an effective synthetic tool. Under the strategy to widen the scope of the reaction, we tried the synthesis of title compounds (Eq. 1, Z=alkenyl), which are expected to be useful chiral building blocks for the asymmetric synthesis of natural products. In this letter, we wish to report that alkenyl groups also cleanly migrate in a stereospecific manner, with synchronous elimination of sulfonyloxy group.

The key intermediate, 1-alkenyl-2-sulfonyloxy-1-propanone acetal $(\underline{7})$ was prepared in several ways. At first (S)-O-(1-ethoxyethyl)-N,N-dimethyl-lactamide $(\underline{3})^{3}$ was treated with lithium acetylide (1.4 equiv.) at -78 °C, followed by acid hydrolysis to give α -hydroxyl ketone ($\underline{4}$) in 91% yield. Dimethyl acetal ($\underline{5a}$) was prepared from $\underline{4}$ by treatment with trimethoxymethane (5 equiv.)-methanesulfonic acid (1 equiv.)⁴) in methanol at 0 °C in 98% yield. 2,2-Dimethyl-trimethylene acetal ($\underline{5b}$) was also prepared by treatment with 2,2-dimethyl-1,3-propanediol (10 equiv.)-trimethylsilyl chloride (2.5 equiv.)⁵) in methanol at 0 °C in 99% yield. The acetylenic acetals ($\underline{5}$) were hydrogenated by H₂ over Lindlar catalyst in hexane to give (Z)-alkenols (Z- $\underline{6}$), or by Na-NH₃ at -78 °C to give (E)-alkenols (E- $\underline{6}$). Crude E- $\underline{6}$ was revealed to be contaminated by *ca*. 2% of Z- $\underline{6}$.⁶) Pure E- $\underline{6}$ was obtained as follows: The mixture was benzoylated, purified by silica-gel column chlomatography (hexane-dichloromethane), and deprotected by a solution of NaOH (3 wt%) in methanol. Olefinic alcohols ($\underline{6}$) were methanesulfonylated to give

<u>7</u>.⁷⁾ Table 1 (entries 1-4) shows the results. In other ways α -sulfonyloxy ketone (<u>9</u>) could be prepared by Grignard coupling between acyl chloride (<u>10</u>) and alkenylmagnesium bromide⁸) or sulfonylation of <u>11</u>.⁹) Acetalization of <u>9</u> by the usual manner was all failed. Only one successful way was treatment of <u>9</u> with 2,2-dimethyl-1,3-bis(trimethylsilyloxy)propane (1.5 equiv.) - trimethylsilyl trifluoro-methanesulfonate (0.1 equiv.) in dichloromethane¹⁰) at room temperature which resulted sulfonyloxy acetal (<u>7</u>) in a high yield. But unfortunately, it was confirmed from the optical purity of final products (<u>8</u>) that a little racemization occured under these conditions (Tables 1 and 2, entries 5,6).

i) a: $HC(OMe)_3$ 5 equiv., $MeSO_3H = 1$ equiv., in MeOH, 0 °C, 2 h b: $HOCH_2CMe_2CH_2OH = 10$ equiv., $Me_3SiCl = 2.5$ equiv., in MeOH, 0 °C, 2 h ii) $Z: H_2(1 \text{ atm})$, Pd-Pb, rt, 2 h E: $Na-NH_3-EtOH$, in THF, -78 °C, 2 h iii) $MeSO_2Cl$ -pyridine, rt iv) TMSOCH₂- $CMe_2CH_2OTMS = 1.5$ equiv., $TMSOSO_2CF_3 = 0.1$ equiv., in CH_2Cl_2 , rt, 20 h v) $(Me-C_6H_4-SO_2)_2O$, pyridine, 0 °C, 1.5 h

Table 1.	Synthesis	of	α -sulfonyloxy	ketone	acetals	(<u>7</u>)
						-

Entry	R ¹	R ²	R ³	R ⁴	Yield <u>6</u>	/ %
1	Me	Bu	н	Me	89 ^{a)}	91
2	Me	н	Bu	Me	83 ^{a)}	97
3	\sum	Bu	н	Me	91 ^{a)}	99
4	\sum	H	Bu	Me	83 ^{a)}	99
5	\sum	Me	Me	Me	74 ^{b)}	90
6	\Box	н	Ph	Me-O-	79 ^{b)}	96

a) Yield from acetylenic acetal (5).

b) Yield of α -sulfonyloxy ketone (9).

Hydrolytic 1,2-rearrangement of alkenyl group of the key intermediate $\underline{7}$ was carried out in the analogous way with aryl rearrangement. When sulfonats ($\underline{7}$) were heated in the presence of calcium carbonate (2 equiv.) in aqueous methanol (MeOH/ $H_2O=7/3 v/v$), methyl esters (<u>8a</u>) or half esters (<u>8b</u>) were obtained in excellent yields. Table 2 shows the results. The products in entries 1-4 were optically pure within the limit of measurement, ^{11,12} indicating that the rearrangement reaction, as well as the each step for preparation of <u>7</u>, proceeded in completely

stereospecific manner. A small contamination by another enantiomer in entries 5,6 are thus concluded to be the result of acetalization step of sulfonyloxy ketone <u>9</u>. Moreover it is worth noting that no geometric isomerization of migrating alkenyl group was observed in the rearrangement process.^{15,16}) It is supposed that elimination of sulfonyloxy group, migration of alkenyl group, and attack of water occured simultaneously without formation of cyclopropyl methyl cation¹⁷) (Fig.1).

Table 2. Synthesis of 2-methyl-3-alkanoic esters (8)

Entry	R ¹	R ²	R ³	R ⁴	Temp/C	Time/h	Yield/%	$[\alpha]_{D}^{\circ}(t^{\prime}C, c, in CHCl_{3})$	e.e./%
1	Me	Bu	н	Me	90	2	83	+166 (21, 1.00)	> 98 ¹¹⁾
2	Me	н	Bu	Me	90	3	85	+ 53 (19, 1.16)	> 95 ¹²⁾
3	\Box	Bu	н	Me	90	3	97	+135 (21, 1.21)	> 98 ¹¹)
4	\sum	н	Bu	Me	90	4	98	+ 39 (19, 1.00)	> 95 ¹²⁾
5	\Box	Me	Me	Me	70 80	14 13	92	+114 (27, 1.00)	93 ¹³⁾
6	\Box	Н	Ph Me	~O~	70	22	92	+ 9 (21, 1.08)	95 ¹¹⁾

In conclusion, 2-methyl-3-alkenoic esters were obtained in optically and geometrically pure forms. Two functional groups of these compounds will serve as versatile synthons in derivation to more complex molecules.

References

- A part of this work was presented at the 49th National Meeting of the Chemical Society of Japan, April 3, 1984, Abstruct II, 1469.
- 2) G. Tsuchihashi, s. Mitamura, K. Kitajima, and K. Kobayashi, Tetrahedron Lett., 23, 5427 (1982).
- 3) Y. Honda, M. Sakai, and G. Tsuchihashi, Chem. Lett., 1985, 1153.
- 4) Under the ice cooling condition, 1 equiv. of sulfonic acid was needed.
- 5) The synthetic procedure for ethylene acetals was applied; T. H. Chan, M. A. Brook, and T. Chaly, *Synthesis*, <u>1983</u>, 203.
- 6) Determined by HPLC measurement of benzoyl derivatives by using Cosmosil 5SL (Japan Spectroscopic Co., LTD.); hexane/dichloromethane=10/1 (v/v), flow rate 0.5 ml/min, k_z =2.43, $\alpha = k_E^2/k_z$ =1.45.
- 7) Sulfonates (<u>7</u>) were relatively unstable, so they were purified by short flash column chromatography (dichloromethane).
- 8) α -Sulfonyloxyacyl chloride (<u>10</u>), prepared from free acid by chlorination, was treated with alkenylmagnesium bromide (1 equiv.) in THF at -42 °C.
- 9) α -Hydroxyl- α',β' -unsaturated ketone (<u>11</u>), available from <u>3</u> by trearment with alkenylmagnesium bromide, was sulfonylated by sulfonic anhydride in pyridine at 0 °C.
- 10) T. Tsunoda, M. Suzuki, and R. Noyori, Tetrahedron Lett., 21, 1357 (1980).
- 11) Determined by ¹H-NMR measurement of (R)-MTPA ester¹⁴⁾ in the presence of $Eu(FOD)_3$ in CCl₄. The ester was prepared from the corresponding alcohol, which was obtained quantitatively by treatment of <u>8</u> with LiAlH₄ in diethyl ether.
- 12) Determined by 100 MHz 13 C-NMR measurement of (R)-MTPA ester.
- 13) Determined by ¹H-NMR measurement using Eu(TFC)₃. The difference in chemical shift for CH₂ group of (R)-and (S)-half ester (<u>8b</u>) was about 0.24 ppm in the presence of 1.1 equiv. of Eu(TFC)₃ in CCl₄.
- 14) J. A. Dale, D. L. Dull, and H. S. Mosher, J. Org. Chem., <u>34</u>, 2543 (1969).
- 15) To our knowledge, this is the first case in the thermal rearrangement, but a similar result has been observed in the reductive rearrangement promoted by organoaluminum.³⁾
- 16) Determined by the signal due to the proton at C-2 on 90 MHz ¹H-NMR measurement in CDCl₃. The difference in chemical shift for Z-isomer and E-isomer was about 0.4 ppm. For example, compounds listed in entries 3 and 4 in Table 2 exhibited the signal at δ 3.45 (Z-<u>8</u>) and 3.06 (E-<u>8</u>) ppm respectively.
- 17) In general, cyclopropyl cation is supposed in many cases as a relatively stable intermediate.

(Received October 2, 1985)

16