

Pergamon

PII: S0040-4039(96)00895-7

[6+6]- Photocycloadditions in "Face-to-Face" Benzo/Pyridazino Systems En Route to Azapagodanes (Azadodecahedranes)¹

Thomas Mathew, Manfred Keller, Dieter Hunkler, and Horst Prinzbach*

Chemisches Laboratorium der Universität Freiburg i. Br.,

Institut für Organische Chemie und Biochemie, Albertstr. 21, D-79104 Freiburg, Germany,

Summary: In two very proximate syn-periplanar ("face-to-face") benzo/pyridazino systems (shortest π,π distances of ca. 3.0 Å, X-ray), photoequilibration (ratio ca. 2:1) with the cyclobutane-photo[6+6]cycloadducts has been installed by 254 nm irradiation. The hetarene/arene "dimers" are thermally persistent enough as to allow pagodane formation through the cycloaddition of dienophiles. Copyright © 1996 Elsevier Science Ltd

Non-covalent interaction² as well as covalent bond formation upon photoexcitation, specifically dimerization,³ between more or less proximate, ordered arene units are subject of active investigation. Still, arene/arene dimerizations with cyclobutane formation ($A \rightarrow B$, [6+6]) are very rare. In the few cases known (X = Y = CH, X = Y = N),^{4,5} rigid carbon skeletons enforce a nearly optimal *syn*-periplanar orientation of the two benzenoid chromophors ("face-to-face") at distances much smaller than van-der-Waals (to the benefit of exciplex formation), and provided enough kinetic stabilization to the "*syn-o*,o'-benzene dimers"⁶ to be preparatively useful - the very first example became a key step in the pagodane-dodecahedrane synthetic scheme.⁷

It is in the photophysical as well as the preparative-synthetic context that an exploration with benzo/pyridazino systems of type A (X = N) was started. Synthetically, the respective cycloadducts B are aspired as potential intermediates en route to diazapagodanes C/diazadodecahedranes D (and respective radicals/ions⁸).

The synthesis of the "face-to-face" benzo/pyridazino substrates 6^9 shares with that of the benzo/benzo analogs⁴ the benzo/ene 1 as π^2 component in the anellation of the second arene ring - here effected with the help of the tetrazines 2^{10} whose functionalization (R) allows broad, target oriented variations. With the readily available phenyland CF₃-disubstituted tetrazines 2a,b exclusive *exo*-addition led to cycloadducts 3a,b. "Aromatization" by elimination of the two "inner" hydrogens faced severe steric inhibition ($\delta_{2(7)-H} = 2.68$ (2.25); s. Schakal plot for 3a) and was additionally complicated by the reactivity of the heterocycles involved. After futile attempts to bring about the dehydrogenation 3a,b \rightarrow 6a,b with standard oxidants (the necessarily forcing conditions had ended in decomposition¹¹) this goal was now achieved through forcing thermal isomerization to 4a,b, N-chlorination to 5a,b, and 1,4HCl-elimination to 6a,b; in case of 5a the system *t*-buOK/toluene proved useful whilst 5b only yielded to the small "naked" F base (P₂F).¹²

(i) 1 equiv. of 2a (2b), anhydr. CH_2Cl_2 , RT, 90 - 95%; (ii) *p*-dichlorobenzene, 173°C, 2h, 70% 4a, 85% 4b; (iii) 1 equiv. of *t*-butylhypochlorite/*t*-buOK (excess), anhydr. toluene, RT, 84% 6a, 90% 5b; P_2F (4 equiv.), anhydr. benzene, RT, 95% 6b.

For the 3,3'- σ , σ '-cyclophane **6a** a crystal structure analysis (Fig. 1)¹³ provided crucial informations; i.a. the shortest π , π -distance *d* of 3.003 (av.) Å between C4-C10, C5-C9 and the degree of pyramidalization of these four arene carbons of ca. 8° as expression of strong π , π repulsion (criterion for cyclobutane formation?). The intrinsic deviation from perfect parallel orientation of the benzenoid chromophors by ca. 9° (MM2, interorbital angle ω = ca. 171°, Schakal plot) is enlarged by this pyramidalization to ca. 20° (ω = ca. 160°). Transannular diamagnetic shielding is expressed in the ¹H NMR shifts.⁹

With respect to the photocycloadditions $6a, b \rightarrow 7a, b$, there were a priori several uncertainties: Would there be an absorption "window" to allow selective excitation of the substrates? Could eventual photoequilibria be steered towards the cycloadducts? Would other photochemical pathways as e.g. metathesis to the [12]diazaannulenes 8 interfere?¹⁴ Would the hetarene/arene-dimers 7a,b be kinetically stable enough to allow their use in cycloaddition reactions? The answers to these questions were in toto rather promising. During irradiation of dilute (ca. 10^{-3} molar), degassed, carefully dried CH₃CN solutions of 6a (6b) at 0°C with the polychromatic light of a high-pressure Hg lamp in a pyrex vessel ($\lambda > 280$ nm) no 7a(7b) was detected; yet, with monochromatic 254 nm light (Hanau, lowpressure Hg lamp, Rayonet chamber, quartz vessel) the equilibria $6a \rightleftharpoons 7a$ and $6b \nRightarrow 7b$ were installed (isosbestic points at 296 nm (228, 249 nm); both ratios of ca. 2:1 not expressing the relative absorption of the equilibrium participants at 254 nm⁴ ($\epsilon_{6a(7a)} = 12650$ (10440); $\epsilon_{6b(7b)} = 2310$ (2410)); the quantum yields for the two processes are different¹⁵). Even under prolonged irradiation no detractive competition (e.g. 8a,b) came into play.

The pyridazine/benzene "dimers" 7a,b proved thermally highly persistent (t1/2 (140°C), benzene, ca. 10 h, 6a,b);

separation of mixtures 6a(7a)/6b(7b) on neutral silica gel was unproblematical; acids catalyze the cycloreversion. The UV absorption spectra of pure 7a,b reveal effective σ -conjugation between the two dienic chromophors (e.g. $\lambda_{max} = 274$ nm for 6a, 304 nm for 7a).¹⁶

In analogy to the standard route to pagodanes⁷, the synthesis of diazapagodanes C requires the (*exo*-)addition of an acetylene equivalent to the heterodiene part of 7 and of the newly created N=N double bond to the opposite butadiene part - with the latter step hopefully enjoying enough entropic assistance to overcome N₂ elimination. Whilst experiments with electron rich reactants^{10,17} are in progress, an explorative study with 7**a**, maleic anhydride (9), and Nphenyl-triazolinedione (10) points to analogies and discrepancies with the dibenzo-photoproduct.¹⁸ The major product (30%, ca. 60% on recovered **6a**) arising from the expectedly slow reaction with 9 (2.5 equiv., 80°C, 9.5 kbar, toluene, 19 h) was identified as [2.2.1.1]diazapagodane 15 - in the not observed intermediate 11 the intramolecular addition of the somewhat strained C=C double bond to the diazabutadiene part is relatively rapid. From the "titration" of 7**a** with the red 10 at room temperature quantitatively a ca. 1:1 mixture of two isomeric adducts (MS) resulted - 16, the tetraza-analogue of 15 (12 not being detectable), and 13 (X-ray); this latter cycloaddition mode ("pincer"-type) had not been observed in the prior studies for 10.¹⁸ To be noted, after standard degradation 13 \rightarrow 14 no pagodane 17 but only **6a** was found. Dimethyl acetylenedicarboxylate, dicyanoacetylene and TCE did not undergo cycloaddition but yielded highly colored products arising from nucleophilic addition of 7**a** through one of its nitrogen-ring atoms.¹⁷

Acknowledgement. This work has been supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF AG. We thank Prof. Dr. J. Sauer, Regensburg, for helpful discussions, Dipl.-Chem. K. Exner for advise with the high-pressure experiments, Dipl.Chem. A. Weiler for MM2 calculations, Dr. L. Knothe for help with the manuscript, T. M. thanks the "Humboldt-Stiftung" for a fellowship.

References and Notes

- 1) Photochemical transformation 79: 78: R. Thiergardt, M. Keller, M. Wollenweber, H. Prinzbach, Tetrahedron Lett. 1993, 34, 3397.
- 2) C.A. Hunter, Angew. Chem. Int. Ed. Engl. 1993, 32, 1584.
- G. Kaupp, Angew. Chem. Int. Ed. Engl. 1980, 19, 243; J. McCullough, Chem. Rev. 1987, 87, 811; Essentials of Molecular Photochemistry (Eds. A. Gilbert, J. Baggott), Blackwell Scientific Publications, London, 1991, p. 355.
- H. Prinzbach, G. Sedelmeier, C. Krüger, R. Goddard, H.-D. Martin, R. Gleiter, Angew. Chem. Int. Ed. Engl. 1978, 17, 297; G. Sedelmeier, W.-D. Fessner, C. Grund, P.R. Spurr, H. Fritz, H. Prinzbach, Tetrahedron Lett. 1986, 27, 1277; B.A.R.C. Murty, P.R. Spurr, R. Pinkos, C. Grund, W.-D. Fessner, D. Hunkler, H. Fritz, W.R. Roth, H. Prinzbach, Chimica, 1987, 41, 32; T. Pracht, K. Weber, H. Fritz, L. Knothe, H. Prinzbach, J. Chim. Chem. Soc. 1994, 41, 1; Photochemical Key Steps in Organic Synthesis (Eds.: J. Mattay, A. Griesbeck), VCH Weinheim 1994 p. 189.
- H. Higuchi, K. Takatsu, T. Otsubo, Y. Sakata, Y. Misumi, Tetrahedron Lett. 1986, 42, 1731; J. Mattay, Angew. Chem. Int. Ed. Engl. 1987, 26, 825.
- W.v.E. Doering, W.R. Roth, R. Breuckmann, H.J. Figge, L. Figge, H.W. Lennartz, W.-D. Fessner, H. Prinzbach, Chem. Ber. 1988, 121, 1.
- W.-D. Fessner, H. Prinzbach, Cage Hydrocarbons (Ed. G.A. Olah), chapter 10, p. 353, John Wiley & Sons, N.Y. 1990; H. Prinzbach, K. Weber, Angew. Chem. Int. Ed. Engl. 1994, 33, 2239.
- H. Prinzbach, G. Gescheidt, H.-D. Martin, R. Herges, J. Heinze, G.K.S. Prakash, G.A. Olah, Pure & Appl. Chem. 1995, 67, 673.
- 9) The new compounds are characterized by elemental analyses and spectral data (IR, UV, ¹H-, ¹³C-NMR, MS). E.g. ¹H-NMR (CDCl₃): **6a** (**6b**): $\delta_{3''(6'')>H} = 6.72$ (6.7), $\delta_{4''(5'')>H} = 6.50$ (6.6); **7a** (**7b**): $\delta_{9(12)>H} = 5.51$ (5.80), $\delta_{10(11)>H} = 5.34$ (5.38). - UV (CH₃CN): **6a**: $\lambda_{max}(\varepsilon) = 338$ nm (sh, 390), 274 (19800), 214 (sh, 25100); **7a**: $\lambda_{max}(\varepsilon) = 392$ nm (sh, 2680), 368 (sh, 5460), 312 (sh, 6420), 304 (12000), 232 (sh, 6500).
- 10) J. Sauer, Acta Chimica Slovenica 1994, 41, 235; N. Haider, Acta Chimica Slovenica 1994, 41, 205.
- 11) C. Grund, Diplomarbeit, University of Freiburg, 1984.
- 12) R. Schwesinger, R. Link, G. Thiele, H. Rotter, D. Honert, H.-H. Limbach, F. Männle, Angew. Chem. Int. Ed. Engl. 1991, 30, 1372.
- 13) Crystal data for 6a: C₃₀H₂₄N₂, λ = 1.54184, crystal system: monoclinic, space group P2₁/c, No. 14, a = 11.5591(7), b = 14.2661(3), c = 15.1306(9) Å, β = 98.440(2)°, V = 2468.1(2) Å³, Z = 4, d_{catcd} = 1.110 gcm⁻³. Enraf-Nonius CAD4 diffractometer, graphite monochromator, crystal size [mm]: 0.40 x 0.30 x 0.15, data collection mode: ω-2Θ-scan, collected reflections: 5295, independent reflections: 5115 (R_{int} = 0.017), reflections observed [I > 2σ(I)]: 4218, μ = 0.465 mm⁻¹, empirical absorption correction. Solution by direct phase determination (SIR88), method of refinement: full-matrix least-squares on F. Hydrogen positions werde refined isotropically, data-to-parameter ratio: 9.6, R = 0.046, R_w = 0.053, EoF = 4.036, extinction coefficient: 1.56 x 10⁻⁶, largest diff. peak: 0.307 eÅ⁻³, final average shift/error: 0.01, program used: MOLEN (Enraf-Nonius, 1990). Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the deposition number CSD 405092, the names of the authors, and the journal citation.
- 14) N.L. Goldman, R.A. Ruden, Tetrahedron Lett. 1963, 3951.
- 15) J. Tonne, K. Markgraf, M. Schottelius, J. Michl, S. Braslawsky, K. Schaffner, H. Prinzbach, to be published.
- 16) R. Gleiter, H. Zimmermann, W.-D. Fessner, H. Prinzbach, Chem. Ber. 1985, 118, 3856.
- 17) P. Riebel, A. Weber, T. Troll, J. Sauer, Tetrahedron Lett. 1996, 37, 1583, and cit. lit; J. Laue, G. Seitz, Liebigs Ann. 1996, 645.
- 18) W.-D. Fessner, C. Grund, H. Prinzbach, *Tetrahedron Lett.* 1989, 30, 3233; F.-G. Klärner, U. Artschwanger-Perl, W.-D. Fessner, C. Grund, R. Pinkos, J.-P. Melder, H. Prinzbach, *Tetrahedron Lett.* 1989, 30, 3137; W.-D. Fessner, C. Grund, H. Prinzbach, *Tetrahedron Lett.* 1991, 32, 5935; W.-D. Fessner, K. Scheumann, H. Prinzbach, *Tetrahedron Lett.* 1991, 32, 5939.
- (Received in Germany 22 April 1996; accepted 8 May 1996)

4494