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High-oxidation state complexes containing alkylidyne function-
alities continue to attract much attention due to their involvement
in important reactions such as alkyne metathesis and CR group-
transfer.1 Prototypical among the immense family of group 5 and
6 early-transition metal alkylidynes is Schrock’s (tBuO)3WtC-
tBu,2 an active alkyne metathesis catalyst that is prepared by two
routes. One of these routes involves two consecutiveR-hydrogen
abstraction reactions,1b,2a while the other is the direct rupture of
nitriles/alkynes with Chisholm’s (tBuO)3WtW(OtBu)3.1a,2b,c,3Al-
though d0 early-transition metal complexes with the terminal
alkylidyne functionality are well-known, the vast majority of these
systems contain second and third row transition metals,1 and only a
handful of Fischer-type carbynes have been reported for V4 and Cr.1

Our interest in d0-metal complexes with metal-carbon multiple
bonds5 triggered the pursuit for the thus far unknown vanadium-
alkylidyne functionality. Herein, we report a new class of vana-
dium(V) complexes having a terminal neopentylidyne that were
prepared systematically by two consecutiveR-hydrogen abstrac-
tions, each induced by one-electron oxidations. These complexes
can engage in intramolecular cross-metathesis reactions to afford
unusual azametalacyclohexatriene products. The energy profile of
this reaction has been examined in detail using DFT calculations.

Previously, we showed that one-electron oxidation of (Nacnac)V-
(CH2

tBu)2 (Nacnac-) [Ar]NC(CH3)CHC(CH3)N[Ar], Ar ) 2,6-
(CHMe2)2C6H3) with AgBPh4 followed by nucleophilic addition
of MgI2 promoted R-hydrogen abstraction to form the four-
coordinate neopentylidene complex (Nacnac)VdCHtBu(I) (Figure
1).5b Inspired by this observation and realizing that vanadium-
alkylidyne complexes are unknown, we alkylated (Nacnac)Vd
CHtBu(I) with LiCH2SiMe3 to form the neopentylidene-alkyl
species (Nacnac)VdCHtBu(CH2SiMe3) (1) in 72% yield after
recrystallization from pentane at-35 °C (Figure 1).6 At room
temperature, complex1 exhibits a solution magnetic moment of
1.90µΒ, and EPR spectra are in accordance with a V(IV) center.6

Single-crystal X-ray diffraction studies confirmed the proposed
connectivity and reveal a short VdC bond length (1.791(6) Å),
and an obtuse VdC-CtBu angle of 163.1(4)° signifying R-agostic
interaction of the VdCR-HR with the vanadium center (Figure 1).6

One-electron oxidation of1 with AgOTf or AgBPh4 yields the
neutral (Nacnac)VtCtBu(OTf) (2)-OTf or cationic [(Nacnac)VtC-
tBu(THF)][BPh4] [2-THF][BPh 4] four-coordinate alkylidyne com-
plexes in 59 and 65% yield, respectively (Figure 1).1H NMR
spectra are consistent with(2)-OTf and [2-THF] + retaining Cs

symmetry in solution, while the combination of13C (δ:2-OTf, 375;
[2-THF][BPh 4], 374)7 and51V (δ: 2-OTf, -882;[2-THF][BPh 4],
-956) NMR spectra suggests that both systems contain the terminal
vanadium(V)-neopentylidyne functionality.6

To confirm the proposed connectivity for each vanadium-
alkylidyne we collected single-crystal X-ray diffraction data from

both reactions.6 The molecular structure for2-OTf and [2-THF]-
[BPh4] reveals a highly distorted tetrahedral vanadium center with
a terminal alkylidyne ligand (Figure 1). In the crystal structures
for each compound the short V-C bond length is consistent with
a metal-ligand triple bond (2-OTf, 1.674(2) Å;[2-THF][BPh 4],
1.696(3) Å). These values are clearly shorter than the average for
neutral and cationic four-coordinate vanadium-neopentylidene
complexes (VdC ≈ 1.79 Å, vide supra),5b or for the Fischer-
carbyne complex (CO)(dmpe)2VtCOSiPh3 (VtC, 1.754(8) Å).4

In addition, the sp-hybridization of the alkylidyne carbon is evident
from the linear V-CR-Câ angles (2-OTf, 177.6(9)°; [2-THF]-
[BPh4], 175.8(3)°). DFT calculations of2-OTf indicate a Mayer-
bond order of 2.4, which lends additional support for the assignment
of the triple bond.6

Although stable as solids, complexes2-OTf and[2-THF][BPh 4]
transform slowly in solution to the vanadium-imido complex
supported by the chelating amido-vinyl ligand, (tBuCdC(Me)CHC-
(Me)N[Ar])V dNAr(OTf) (3)-OTf and [(tBuCdC(Me)CHC(Me)N-
[Ar])V dNAr(THF)][BPh4] [3-THF][BPh 4], as evidenced by1H and
13C NMR spectroscopy (85 and 81% isolated yield, respectively,
Figure 1).6 Complexes3-OTf and[3-THF][BPh 4] have been fully
characterized6 and are best described as an azametalacyclohexatriene
system resulting from a cross-metathesis transformation. The VNC4

metalacycle in the structure of3-OTf is far from being planar (V
deviation from the NC4 plane is 1.21 Å).8 This feature also places
the metal center in contact with theâ-carbons (C(3), 2.486(6) (Å);
C(5), 2.387(7) Å). Thus, the term azametalabenzene seems inap-
propriate for the vanadium systems reported here.

The reaction of2-OTff3-OTf in C7D8 was determined to be
first order in vanadium withk ) 3.30(5)× 10-5 s-1 @ 74 °C.
Temperature dependence studies from 56 to 91°C for the
2-OTff3-OTf transformation allowed for extraction of the activa-
tion parameters∆Sq ) -6(3) cal/mol‚K-1, ∆Hq ) 25.4(3) kcal/
mol from the Eyring plot.6 In addition, the rate of formation of
3-OTf from 2-OTf was found to be independent of solvent (C7D8

vs THF-d8), suggesting no involvement of dissociative or associative
mechanisms.6

High-level DFT calculations of the2-OTff3-OTf reaction also
support an intramolecular rearrangement invoking an azametala-
cyclobutene ring in the transition state2-TS (Figure 2). The
computed activation parameters match the experimental results
(∆Scalc

q ) -10.3 cal/mol‚K-1, ∆Hcalc
q ) 28.8 kcal/mol) quite well.

In the reaction coordinate of2-OTff3-OTf the cross-metathesis
reaction is thermodynamically downhill by 21.3 kcal/mol (∆G, 298
K). Calculations indicate no stable intermediate along the reaction
coordinate, suggesting a fast and smooth reaction to yield product
3-OTf once2-TS is traversed (Figure 2).6 As illustrated in Figure
2, the triflate ligand adopts a bidentate coordination geometry in
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2-TS, which is a minor, but notable feature promoting the
transformation.

In summary, we have demonstrated that the (Nacnac)V frame-
work is capable of stabilizing reactive vanadium-carbon double
and triple bonds. Interestingly, our strategy to prepare d0 metal
alkylidynes from vanadium-alkylidenes contrasts Schrock’s two-
electron reduction reactions of high-valent alkylidenes to prepare
TatC linkages (referred to asR-H elimination or 1,2-H migration).9

In the presence of 1 equiv of LiCH2tBu complex2-OTf readily
polymerizes HCtCPh to affordMn in excess of∼7000. More
detailed studies of the polymerization reaction are currently in
progress in our laboratory.
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Figure 1. Synthesis of neutral and cationic four-coordinate vanadium(IV) alkylidyne complexes as well as the thermolysis product of each. Only the core
structures of1, 2-OTf, [2-THF] +, and3-OTf, are depicted with 50% thermal ellipsoid plots. Hydrogen atoms with the exception ofR-H, aryl groups with
the exception of ipso carbons, and SO2CF3 and carbon atoms on O(38) have been excluded for clarity.

Figure 2. Calculated reaction energy profile for the conversion of2-OTf
to 3-OTf. Only the core structure is illustrated for clarity, all energies are
in kcal/mol, entropies in cal/mol‚K-1, distances in Å. Experimental
activation parameters are given in brackets.
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