ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by UNIVERSITY OF ADELAIDE LIBRARIES

Design and synthesis of N-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu3 NAMs

Julie L Engers, Katrina A Bollinger, Rebecca L Weiner, Alice L Rodriguez, Madeline F Long, Megan M Breiner, Sichen Chang, Sean R Bollinger, Michael Bubser, Carrie K. Jones, Ryan D Morrison, Thomas M. Bridges, Annie L Blobaum, Colleen M Niswender, P Jeffrey Conn, Kyle A Emmitte, and Craig W Lindsley ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.7b00249 • Publication Date (Web): 15 Aug 2017 Downloaded from http://pubs.acs.org on August 16, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

Design and synthesis of *N*-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu₃ NAMs

Julie L. Engers,^{†,||} Katrina A. Bollinger,^{||} Rebecca L. Weiner,^{||} Alice L. Rodriguez,^{†,||} Madeline F. Long,^{||} Megan M. Breiner,^{||} Sichen Chang,^{||} Sean R. Bollinger,^{||} Michael Bubser,^{†,||} Carrie K. Jones,^{†,||, Y} Ryan D. Morrison,^{||} Thomas M. Bridges,^{†,||} Anna L. Blobaum,^{†,||} Colleen M. Niswender,^{†,||, Y} P. Jeffrey Conn,^{†,||, Y} Kyle A. Emmitte,^{†,||, €} and Craig W. Lindsley^{†,||}*

[†]Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States

^IVanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, TN 37232, United States

^YVanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States

[€]current address: Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States.

KEYWORDS: Negative allosteric modulator (NAM), metabotropic glutamate receptor 3 (mGlu₃), depression, VU6010572, physiochemical properties

ABSTRACT: Herein, we detail the optimization of the mGlu₃ NAM, VU0650786, via a reductionist approach to afford a novel, simplified mGlu₃ NAM scaffold that engenders potent and selective mGlu₃ inhibition (mGlu₃ IC₅₀ = 245 nM, mGlu₂ IC₅₀ >30 μ M) with excellent CNS penetration (rat brain:plasma K_p = 1.2, K_{p.uu} = 0.40). Moreover, this new chemotype, exemplified by VU6010572, requires only four synthetic steps, displays improved physiochemical properties and *in vivo* efficacy in a mouse tail suspension test (MED = 3 mg/kg i.p.).

GRM3, the gene that encodes metabotropic glutamate receptor subtype 3 (mGlu₃), represents a significant locus associated with schizophrenia, substance abuse disorders and bipolar disorder: moreover, single-nucleotide polymorphisms (SNPs) within *GRM3* are linked to cognitive deficits.¹⁻⁶ Dual mGlu_{2/3} negative allosteric modulators (NAMs) 1-5 have demonstrated therapeutic potential in Alzheimer's disease, anxiety, obsessive-compulsive disorder, autism spectrum disorders and cognition (Figure 1).⁶⁻¹¹ Moreover, the mGlu_{2/3} NAM decoglurant 5 advanced into human Phase II clinical trials for depression.¹²⁻¹⁴ Despite the therapeutic relevance and clinical interest, few highly selective mGlu₃ NAMs exist to define the contribution of mGlu₃ inhibition.¹⁵⁻¹⁹ Early mGlu₃ NAM tool compounds 6 and 7 (Figure 2), derived from 'molecular switches' within mGlu₅ positive allosteric modulator (PAM) ligands,^{20,21} enabled study of selective mGlu₃ inhibition and highlighted a key role for mGlu₃ in the regulation of synaptic plasticity in medial prefrontal cortex (mPFC) as well as antidepressant and anxiolytic activity.²² In particular, VU0650786, 8, (mGlu₂ IC₅₀ >30 µM, mGlu₃ IC₅₀ = 392 nM, rat brain:plasma $K_p = 1.7$; $K_{p,uu} = 0.78$) has emerged as a highly valuable mGlu₃ NAM in vivo probe; however, it requires a nine step synthesis.²³ Thus, we hoped to simplify the VU0650786 chemotype and also improve upon physicochemi-

cal properties in a next generation mGlu₃ NAM *in vivo* probe with a strong intellectual property (IP) positon.

Figure 1. Structures of reported dual mGlu_{2/3} NAMs **1-5** that have provided target validation for Group II mGlu inhibition in multiple CNS disorders.

Figure 2. Structures and *in vitro* mGlu₂ / mGlu₃ potencies of reported mGlu₃ NAMs **6-8**, all derived from mGlu₅ PAM scaffolds via 'molecular switches'.

Using **8** as a lead, our goal was to reduce molecular complexity and enhance physicochemical properties in a next generation mGlu₃ NAM. We elected to deconstruct the heterobicyclic dihydropyrazolo[1,5-*a*]pyrazine-4(5*H*)-one core of **8**, and replace it with an ethereal, aliphatic linker and either an *N*aryl pyrimidine or *N*-aryl pyridine head-piece (**Figure 3**) to provide greater conformational flexibility and rapid synthesis.

Figure 3. Optimization plan to deconstruct 8 into more flexible cores 9 and 10 with improved predicted physicochemical properties.

The chemistry to access scaffolds 9 and 10 proved straightforward.²⁴ For scaffold 9 (Scheme 1), commercially available 2,4-dichloropyrimidine 11 underwent an S_NAr reac-

Scheme 1. Synthesis of Analogues 9^a

^{*a*}Reagents and conditions: (a) 2-phenoxyethanol, NaH, DMF, 0 °C to rt, 46%; (b) K_2CO_3 , DABCO, H_2O , 1,4-Dioxane, 70 °C, 83%; (c) 8-hydroxyquinoline, CuI, K_2CO_3 , DMSO, microwave, 160 °C, 30 min, 16-45%.

tion with 2-phenoxyethanol, followed by a second S_NAr with water to afford pyrimidinone 12. Finally, a copper-mediated *N*-arylation step delivered analogs 9 in good yields in only three steps.²⁴ Similarly, pyridine analogs 10 were all prepared in a three step fashion (Scheme 2). Here, commercial 4-nitropyridine-1-oxide 13 undergoes an S_NAr reaction with 2-phenoxyethanol to provide 14. *N*-oxide migration provides the pyridine core, which is then *N*-alkylated under copper catalysis with aryl boronic acids to provide analogs 10.²⁴ Variations on this scheme were used to generate analogs 10 where the unsubstituted phenyl moiety was replaced with functionalized aryl and heteroaryl moieties.

Scheme 2. Synthesis of Analogues 10^a

^aReagents and conditions: (a) 2-phenoxyethanol, NaH, DMF, 0 °C to 100 °C, 81%; (b) Ac₂O, microwave 140 °C, 60 min, then 1N LiOH, 50 °C, 57%; (c) ArB(OH)₂, Cu(OAc)₂, pyridine, 4Å MS, DCM, air, 44-65%.

A limited number of pyrimidine analogs **9** were prepared, as SAR was steep and selectivity versus mGlu₅ eroded, but Table 1 highlights key analogs in this series. While not productive en route to a new mGlu₃ *in vivo* probe, **9a** was a potent mGlu₃ NAM (IC₅₀ = 295 nM) with no discernable activity at mGlu₂ (IC₅₀ >30 μ M). Relative to **8**, potency was enhanced, molecular weight reduced and fraction unbound in plasma doubled (rat *f*_{u,plasma} = 0.16), all of which validated the reductionist approach.

Table 1. Structures and activities of analogs 9.^a

Entry	Ar	mGlu ₃ IC ₅₀	mGlu ₃	mGlu ₅ EC ₅₀
-		$(\mu M)^a$	pIC ₅₀	$(\mu M)^{a}$
		[Glu Min	(±SEM)	(pEC ₅₀ ,
		±SEM]		%Glu Max)
9a	rd and a second			
	L F	0.29	6.53 <u>+</u> 0.08	1.2
		[3.94 <u>+</u> 1.1]		(5.9, 97)
9b	, ^{ré} F			
		>10	<5	3.5 (5.5, 77)
		[15.5 <u>+</u> 5.4]		
9c	rd √√F			
		1.02	5.99+0.25	0.43
	· · F	[3.77 <u>+</u> 0.76]	_	6.4, 83)

³Calcium mobilization assays with mGlu₃/G_{qi5}-CHO cells performed in the presence of an EC₈₀ fixed concentration of glutamate; values represent means from three (*n*=3) independent experiments performed in triplicate.

 However, as alluded to above, **9a**, while selective versus $mGlu_{1,2,4,6,7,8}$, was an $mGlu_5$ PAM (EC₅₀ = 1.2 µM, 97% Glu Max). Interestingly, **9c** was a more potent $mGlu_5$ PAM (EC₅₀ = 427 nM, 83% Glu Max) than $mGlu_3$ NAM (IC₅₀ = 1.02 µM). These finding were not entirely unexpected, as eliminating $mGlu_5$ PAM activity was a major facet of the optimization effort that delivered **8**.²³ Would deletion of a single nitrogen atom in **9** to yield analogs **10** eliminate the $mGlu_5$ PAM activity while maintain all of the other favorable properties?

Table 2 highlights SAR for the pyridinone analogs **10** which proved more robust than NAMs **9**, with direct analogs of **9b** and **9c** significantly more potent (**10b** and **10c**) mGlu₃ NAMs. Relative to **8**, potency was enhanced, molecular weight reduced and fraction unbound in plasma doubled (rat $f_{u,plasma} = 0.12$ to 0.16), all of which further validated the reductionist approach. Moreover, all were highly selective versus mGlu₂ (IC₅₀S > 30 μ M), and mGlu₅ PAM activity diminished (mGlu₅ EC₅₀s in the 400 nM to 6 μ M ranges). However, analogs such as **10a** and **10c** emerged with unique, dual mGlu₃ NAM/mGlu₅ PAM pharmacological profiles; in contrast, **10d** displayed ~18-fold selectivity as an mGlu₃ NAM versus mGlu₅ PAM activity.

Table 2. Structures and activities of analogs 10.^a

Entry	Ar	mGlu ₃ IC ₅₀	mGlu ₃	mGlu ₅ EC ₅₀		
		$(\mu M)^a$	pIC ₅₀	$(\mu M)^a$		
		[Glu Min	(±SEM)	(pEC _{50.} %		
		±SEM]		Glu Max)		
10a	P. F	0.93 [2.69 <u>+</u> 0.7]	6.03 <u>+</u> 0.12	0.56 (6.2, 97)		
10b	F	0.39 [3.45 <u>+</u> 1.1]	6.41 <u>+</u> 0.09	1.9 (5.7, 88)		
10c	F	0.18 [3.53 <u>+</u> 1.1]	6.74 <u>+</u> 0.09	0.34 (6.5, 91)		
10d	rd CN	0.34 [3.63 <u>+</u> 1.2]	6.47 <u>+</u> 0.08	6.0 (5.2, 87)		
10e	F CN	0.27 [3.39 <u>+</u> 1.0]	6.57 <u>+</u> 0.11	1.3 (5.9, 27)		
^a Calcium mobilization assays with mGlu ₃ /G ₀₁₅ -CHO cells performed in the						

"Calcium mobilization assays with mGlu₃/G_{qi5}-CHO cells performed in the presence of an EC₈₀ fixed concentration of glutamate; values represent means from three (n=3) independent experiments performed in triplicate. In an effort to eliminate mGlu₅ PAM activity, we held the 4-fluorophenyl moiety of the pyridinone constant and surveyed replacements for the western phenyl moiety as well as a methyl substituent on the ether chain, generating analogs **15** (**Table 3**).²⁴ While mGlu₃ activity and selectivity versus mGlu₂

Table 3. Structures and activities of analogs 15.^a

Entry	Ar (het)	R	mGlu ₃ IC ₅₀ (µM) ^a [Glu Min ±SEM]	mGlu ₃ pIC ₅₀ (±SEM)	mGlu ₅ EC ₅₀ (µM) ^a (pEC _{50,} % Glu Max)	
15a	L M	Н	0.35 [3.56 <u>+</u> 1.1]	6.46 <u>+</u> 0.06	1.5 (5.8, 93)	
15b	N CI	Н	0.45 [3.62 <u>+</u> 1.2]	6.35 <u>+</u> 0.04	7.8 (5.1, 94)	
15c		Η	1.45 [3.77 <u>+</u> 0.76]	5.84 <u>+</u> 0.12	8.8 (5.1, 82)	
15d		Me	1.23 [3.57 <u>+</u> 0.84]	5.91 <u>+</u> 0.14	>30 (<4.5)	
"Calcium mobilization assays with mGlu ₃ / G_{ai5} -CHO cells performed in the						

"Calcium mobilization assays with mGlu₃/G₀₁s-CHO cells performed in the presence of an EC₈₀ fixed concentration of glutamate; values represent means from three (n=3) independent experiments performed in triplicate.

was maintained (mGlu₂ IC₅₀s > 30 μ M), mGlu₅ PAM activity persisted in **15a-c** (mGlu₅ EC₅₀s in the 1.7 μ M to 9 μ M ranges), but greatly diminished relative to analogs **10**, with the pyridine ether moieties. However, the racemic methyl congener **15d** proved exceptional. **15d** was a moderately potent mGlu₃ NAM (IC₅₀ = 1.2 μ M), but proved to be selective versus both mGlu₂ (IC₅₀s > 30 μ M) and mGlu₅ (EC₅₀s > 30 μ M). In addition, **15d** had a clean CYP₄₅₀ inhibition profile (IC₅₀ > 30 μ M versus 3A4, 2D6, 2C9 and 1A2), good fraction unbound ($f_{u,plasma} = 0.04$ (rat),

Scheme 3. Synthesis of enantiomers 18 and 19^a

^{*a*}Reagents and conditions: (a) 4-FPhB(OH)₂, Cu(OAc)₂, pyridine, 4Å MS, DCM, air, 72%; (b) 10% Pd/C, H₂ (1 atm), MeOH, 18 h, 99%; (*R*)-2-phenoxypropan-1-ol or (*S*)-2-phenoxypropan-1-ol, PPh₃, D'BAD, THF, rt,18h, 72-75%.

0.10 (human) and $f_{u,brain} = 0.05$ (rat), was highly CNS penetrant in rat (brain plasma $K_p = 1.7$, $K_{p,uu} = 1.3$) and showed moderate predicted hepatic clearance (rat $CL_{hep} = 43.2$ mL/min/kg, human $CL_{hep} = 10.7$ mL/min/kg; based on microsomal intrinsic clearance data).^{24,25} Thus, efforts focused on synthesizing and evaluating the discrete enantiomers of **15d**.

The synthesis of the (*R*) and (*S*) enantiomers of **15d** is shown in Scheme 3.²⁴ Commercially available pyridine **16** is subjected to the standard copper catalyzed arylation with 4fluorophenyl boronic acid, followed by 10% Pd/C hydrogenation to provide **17**. A Mitsunobu reaction with either (*R*)-2phenoxypropan-1-ol or (*S*)-2-phenoxypropan-1-ol, both known compounds,²⁴ delivers **18** and **19**, respectively in good overall yields and enantiopurity. When assessed in our assays, the (*R*)-enantiomer **18** was devoid of activity at both mGlu₃ and mGlu₂ (IC₅₀s > 30 μ M), demonstrating significant enantiopreference. In contrast (**Figure 4**), the (*S*)-enantiomer **19** proved to be a potent mGlu₃ NAM (IC₅₀ = 245 nM, pIC₅₀ = 6.61±0.12, 3.33±0.31) with high selectivity versus not only mGlu₂ (IC₅₀ > 30 μ M) and mGlu₅

Figure 4. Structure, molecular pharmacology and DMPK profile of 19.

(EC₅₀ > 30 μM), but all mGlu receptors (inactive at mGlu_{1,4,6,7,8}). In terms of its DMPK profile, **19** displayed an attractive profile with no CYP₄₅₀ inhibition liabilities (IC₅₀s > 30 μM), good fraction unbound in plasma ($f_{u,plasma}s \sim 0.18$ for human, rat and mouse), moderate predicted hepatic clearance across species, and, relative to **8**, kinetic solubility (PBS buffer at pH 7.4) improved 4-fold (98 μM). In rat, **19** was highly CNS penetrant (brain:plasma K_p = 1.15, K_{p,uu} = 0.40) and mouse (K_p = 1.17, K_{p,uu} = 0.26). Before any *in vivo* behavior was performed, we also explored broader ancillary pharmacology beyond the mGlus in a Eurofins radioligand binding panel of 68 GPCRs, ion channels, transporters and nuclear hormone receptors.^{24,26} Gratifyingly, no significant activities were noted (no inhibition >50% @ 10 μM).

With interest in Group II NAMs for depression-related behaviors, and as potentially novel antidepressants, we evaluated 19 in a mouse tail suspension study^{27,28} side-by-side with a new CNS penetrant mGlu₂ NAM (20, VU6001966)^{24,29-32} to dissect the role of the individual Group II mGluRs in this paradigm. The two NAMs were administered i.p. and compared relative to a 30 mg/kg i.p. dose of ketamine (Figure 5). The mGlu₃ NAM 19 (VU6010572) showed robust efficacy in this model at 3 mg/kg (roughly comparable to the effect elicited by ketamine at 30 mg/kg), while the mGlu₂ NAM 20 (VU6001966) was inactive up to 30 mg/kg i.p. Exposure was measured from these studies, and 19 achieved total brain levels of ~1.2 μ M (K_p = 1.2, K_{p,uu} = 0.27 for this mouse PK/PD study) at the 3 mg/kg dose (~5-fold above the mGlu₃ IC₅₀), while 20 achieved total brain levels of ~14 µM (~180-fold above the mGlu₂ IC₅₀) at the highest dose tested (30 mg/kg i.p.). For the majority of our allosteric modulator programs, total brain exposure, and not free brain levels, is the best correlate of *in vivo* efficacy.^{22,23,33-35} These early data support a greater contribution of mGlu₃ inhibition for the antidepressant effects of dual mGlu_{2/3} NAMs (and in agreement with previous studies with 8),²³ but studies are underway in other antidepressant behavioral paradigms and in both mice and rats to strengthen these preliminary findings.

Figure 5. Mouse tail suspension test in CD-1 mice with A) mGlu₃ **19** and B) mGlu₂ NAM **20**. The MED for mGlu₃ **19** is 3 mg/kg i.p., while the mGlu₂ NAM **20** is without effect up to 30 mg/kg in this paradigm. Ketamine (the positive control) displays efficacy at 30 mg/kg in this paradigm. Vehicle: 10% Tween 80 in H₂O (10 mL/kg), n = 10-14 mice per dose group. *p <0.05 vs. vehicle, **p < 0.01 versus vehicle.²⁴

In summary, we have discovered the next generation of highly selective and CNS penetrant mGlu₃ NAMs by a reductionist strategy that lowered molecular weight, improved physicochemical and DMPK properties, while also reducing the synthetic route by 50%, relative to **8**. Moreover, a head-to-

head comparison of highly selective and CNS penetrant mGlu₂ and mGlu₃ NAMs in a mouse tail suspensions test, to assess potential antidepressant phenotype, indicated the mGlu₃ inhibition is the dominant mGlu subtype responsible for efficacy. Further anti-depressant paradigms in both mice and rats are underway, and results will be reported in due course.

AUTHOR INFORMATION

Corresponding Authors

*(CWL). Phone: 1 615-322-8700. Fax: 1 615-936-4381. Email: craig.lindsley@vanderbilt.edu.

Author Contributions

CWL wrote the manuscript and oversaw the medicinal chemistry. KAE designed compounds and JLE, KAB, MFL, MBM and SRB performed chemical synthesis. PJC, ALR and CMN performed and analyzed molecular pharmacology data. SC, RDMM, TMB and ALB oversaw and analyzed in vitro and in vivo DMPK data. CKJ and MB performed and analyzed the mouse tail suspension assay/data.

All authors have given approval to the final version of the manuscript.

Acknowledgement

The authors would also like to thank William K. Warren, Jr. and the William K. Warren Foundation who funded the William K. Warren, Jr. Chair in Medicine (to C.W.L.), and the National Institute of Mental Health for funding R01MH099269 (to K.A.E.).

ASSOCIATED CONTENT

Supporting Information. General methods for the synthesis and characterization of all compounds, and methods for the *in vitro* and *in vivo* DMPK protocols and supplemental figures. This material is available free of charge via the Internet at http://pubs.acs.org.

ABBREVIATIONS

Metabotropic glutamate receptor (mGlu); PAM, positive allosteric modulator; NAM, negative allosteric modulator; mGlu₃, metabotropic glutamate receptor subtype 3; PBL, plasma:brain level; K_p, plasma:brain partitioning coefficient; K_{p,uu}, unbound plasma:unbound brain partitioning coefficient; DCM, dichloromethane; DABCO, 1,4-diazabicylco[2.2.2]octane; MED, minimum effective dose; CYP; cytochrome P450; PK/PD, pharmacokinetic/pharmacodynamics; DMPK, drug metabolism and pharmacokinetics; DtBAD, di-*tert*-butyl azodicarboxylate.

REFERENCES

- Egan, M.F.; Straub, R.E.; Goldberg, T.E.; Yakub, I.; Callicott, J.H.; Hariri, A.R.; Mattay, V.S.; Bertolino, A.; Hyde, T.M.; Shannon-Weickert, C.; Akil, M.; Crook, J.; Vakkalanka, R.K.; Balkissoon, R.; Gibbs, R.A.; Kleinman, J.E.; Weinberger, D.R. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. *Proc. Natl. Acad. Sci. USA* 2003, 101,12604–12609.
- Harrison, P.J.; Lyon, L.; Sartorius, L.J.; Burnet, P.W.; Lane, T.A. The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): Expression, function and involvement in schizophrenia. *J. Psychopharmacol.* 2008, 22, 308–322.

- Tan, H-Y.; Chen, Q.; Sust, S.; Buckholtz, J.W.; Meyers, J.D.; Egan, M.F.; Mattay, V.S.; Meyer-Lindenberg, A.; Weinberger, D.R.; Callicott, J.H. Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function. *Proc. Natl. Acad. Sci. USA* 2007, *104*, 12536–12541.
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. *Nature* 2014, 511, 421–427.
- Kandaswamy, R.; McQuillin, A.; Sharp, S.I. Genetic association, mutation screening, and functional analysis of a Kozak sequence variant in the metabotropic glutamate receptor 3 gene in bipolar disorder. JAMA Psychiatry 2013, 70, 591–598.
- O'Brien, N.L.; Way, M.J.; Kandaswamy, R.; Fiorentino, A.; Sharp, S.I.; Quadri, G.; Alex, J.; Anjorin, A.; Ball, D.; Cherian, R.; Dar, K.; Gomez, A.; Guerrini, I.; Heydtmann, M.; Hillman, A.; Lankappa, S.; Lydall, G.; O'Kane, A.; Patel, S.; Quested, D.; Smith, I.; Thomson, A.D.; Bass, N.; Morgan, M.Y.; Curtis, D.; McQullin, A. The functional GRM3 Kozak sequence variant rs148754219 affects the risk of schizophrenia and alcohol dependence as well as bipolar disorder. *Psychiatr. Genet.* 2014, 24, 277–278.
- Woltering, T. J.; Wichmann, J.; Goetschi, E.; Knoflach, F.; Ballard, T. M.; Huwyler, J.; Gatti, S. Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 4. In vivo active potent and selective non-competitive metabotropic gluta mate receptor 2/3 antagonists. *Bioorg. Med. Chem. Lett.* 2010, 20, 6969–6974.
- Yacoubi, M. E.; Vaugeois, J.-M.; Kalinichev, M.; Célanire, S.; Parron, D.; Le Poul, E.; Campo, B. Effects of a mGluR2/3 negative allosteric modulator and a reference mGluR2/3 orthosteric antago nist in a genetic mouse model of depression. In Behavioral Studies of Mood Disorders; Proceedings of the 40th Annual Meeting of the Society for Neuroscience, San Diego, CA, Nov 13–17, 2010; Soci ety for Neuroscience: Washington, DC, 2010; 886.14/VV7.
- Goeldner, C.; Ballard, T. M.; Knoflach, F.; Wichmann, J.; Gatti, S.; Umbricht, D. Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target. *Neuropharmacology* 2013, 64, 337–346.
- Kalinichev, M.; Campo, B.; Lambeng, N.; Célanire, S.; Schneider, M.; Bessif, A.; Royer-Urios, I.; Parron, D.; Legrand, C.; Mahious, N.; Girard, F.; Le Poul, E. An mGluR2/3 negative allo-Steric modulator improves recognition memory assessed by natural forgetting in the novel object recognition test in rats. In Memory Consolidation and Reconsolidation: Molecular Mechanisms II; Pro ceedings of the 40th Annual Meeting of the Society for Neurosci ence, San Diego, CA, Nov 13–17, 2010; Society for Neuroscience: Washington, DC, 2010; 406.9/MMM57.
- Choi, C. H.; Schoenfeld, B. P.; Bell, A. J.; Hinchey, P.; Kollaros, M.; Gertner, M. J.; Woo, N. H.; Tranfaglia, M. R.; Bear, M. F.; Zukin, R. S.; McDonald, T. V.; Jongens, T. A.; McBride, S. M. Pharmacological reversal of synaptic plasticity deficits in the mouse model of fragile X syndrome by group II mGluR antagonist or lithium treatment. *Brain Res.* 2011, *1380*, 106–119.
- Gatti McArthur, S.; Saxe, M.; Wichmann, J.; Woltering, T. mGlu2/3 antagonists for the treatment of autistic disorders. PCT Int. Pat. Appl. WO 2014/064028 A1, May 1, 2014.
- Structure of decoglurant disclosed in Recommended International Nonproprietary Names (INN). WHO Drug Information; World Health Organization: Geneva, Switzerland, 2013; Vol. 27, no. 3, p 150.
- ARTDeCo Study: A study of RO4995819 in patients with major depressive disorder and inadequate response to ongoing antidepressant treatment. ClinicalTrials.gov; U.S. National Institutes of Health: Bethesda, MD, 2011; https://www.clinicaltr.als.gov/ct2/show/NCT01457677
- Niswender, C. M.; Conn, P. J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. *Annu. Rev. Pharmacol. Toxicol.* 2010, *50*, 295–322.
- Schoepp, D. D.; Jane, D. E.; Monn, J. A. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. *Neurophar macology* **1999**, *38*, 1431–1476.
- 17. Chaki, S.; Ago, Y.; Palucha-Paniewiera, A.; Matrisciano, F.; Pilc, A. mGlu2/3 and mGlu5 receptors: Potential targets for novel

antidepressants. Neuropharmacology 2013, 66, 40-52.

- Palucha, A.; Pilc, A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. *Pharmacol. Ther.* 2007, 115, 116–147.
- Lindsley, C.W.; Emmitte, K.A.; Hopkins, C.R.; Bridges, T.M.; Greg ory, K.A.; Niswender, C.M.; Conn, P.J. 'Practical strategies and con cepts in GPCR allosteric modulator discovery: Recent advances with metabotropic glutamate receptors' *Chem. Rev.* 2016, *116*, 6707-6741.
- Sheffler, D. J.; Wenthur, C. J.; Bruner, J. A.; Carrington, S. J. S.; Vinson, P. N.; Gogi, K. K.; Blobaum, A. L.; Morrison, R. D.; Vamos, M.; Cosford, N. D. P.; Stauffer, S. R.; Daniels, J. S.; Niswender, C. M.; Conn, P. J.; Lindsley, C. W. Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM. *Bioorg. Med. Chem. Lett.* 2012, *22*, 3921–3925.
- Wenthur, C. J.; Morrison, R.; Felts, A. S.; Smith, K. A.; Engers, J. L.; Byers, F. W.; Daniels, J. S.; Emmitte, K. A.; Conn, P. J.; Lindsley, C.W. Discovery of (R)—(2-fluoro-4-((-4-methoxy phenyl)ethynyl)-phenyl(3-hydroxypiperidin-1-yl)methanone (ML337), An mGlu3 selective and CNS penetrant negative allo steric modulator (NAM). J. Med. Chem. 2013, 56, 5208–5212.
- Walker, A. G.; Wenthur, C. J.; Xiang, Z.; Rook, J. M.; Emmitte, K. A.; Niswender, C. M.; Lindsley, C. W.; Conn, P. J. Metabo tropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. *Proc. Natl. Acad. Sci. U. S.A.* 2015, *112*, 1196–1201.
- Engers, J.L.; Rodriguez, A.L.; Konkol, L.C.; Morrison, R.D.; Thompson, A.D.; Byers, F.W.; Blobaum, A.L.; Chang, S.; Loch, M.T.; Niswender, C.M.; Daniels, J.S.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Emmitte, K.A. Discovery of VU0650786: A selec tive and CNS penetrant negative allosteric modulator of metabo tropic glutamate receptor subtype 3 with antidepressant and anxio lytic activity in rodents. *J. Med. Chem.* 2015, *58*, 7485-7500.
 See Supporting Information for full details.
- Rook, J.M.; Abe, M.; Cho, H.P.; Nance, K.D.; Luscombe, V.B.; Adams, J.J.; Dickerson, J.W.; Remke, D.H.; Garcia-Barrantes, P.M.; Engers, D.W.; Engers, J.L.; Chang, S.; Foster, J.J.; Blobaum, A.L.;Niswender, C.M.; Jones, C.K.; Conn, P.J.; Lindsley, C.W. Diverse effects on M₁ signaling and adverse effect liability with in a series of M₁ ago-PAMs. *ACS Chem. Neurosci.* 2017, *8*, 866-883.
- 26. LeadProfilingScreen; (catalogue no. 68) Eurofins Panlabs, Inc.: Redmond, WA (www.eurofinspanlabs.com).
- Zhang, L.; Balan, G.; Barreiro, G.; Boscoe, B. P.; Chenard, L. K.; Ripoll, N.; David, D.J.; Dailly, E.; Hascoet, M.; Bourin, M. Antide pressant-like effects in various mice strains in the tail suspension test. *Behav. Brain. Res.* 2003, *143*,193–200.
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. *Neurosci. Biobehav. Rev.* 2005, 29, 571–625.
- Bollinger, K.A.; Felts, A.S.; Brassard, C.J.; Engers, J.L.; Weiner, R.L.; Cho, H.P.; Rodriguez, A.L.; Bubser, M.; Engers, D.W.; Blobaum, A.L.; Jones, C.K.; Niswender, C.M.; Emmitte, K.A.; Conn, P.J.; Lindsley, C.W. 'Design of 4-aryl-5-(1-methyl-1*H*-pyra zol-3-yl)methoxy)picolinamides as highly selective and CNS pene trant metabotropic glutamate receptor subtype 2 (mGlu₂) negative al losteric modulators' ACS Med. Chem. Lett., submitted.
- Felts, A.S.; Rodriguez, A.L.; Smith, K.A.; Engers, J.L.; Morrison, R.D.; Byers, F.W.; Blobaum, A.L.; Locuson, C.W.; Chang, S.; Ve nable, D.F.; Niswender, C.M.; Daniels, J.S.; Conn, P.J.; Lindsley, C.W.; Emmitte, K.A. Design of 4-Oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as selective negative allosteric modulators of metabotropic glutamate receptor subtype 2' *J. Med. Chem.* 2015, 58, 9027-9040.
- Zhang, X.; Kumata, K.; Yamasaki, T.; Cheng, R.; Hatori, A.; Ma, L.; Zhang, Y.; Xie, L.; Wang, L.; Kang, J.H.; Sheffler, D.J.; Cosford, N.D.P.; Zhang, M-R.; Liang, S.H. Synthesis and preliminary studies of a novel negative allosteric modulator, 7-((2,5-dioxopyrrolidin-1yl)methyl)-4-(2-fluoro-4-[¹¹C]methoxyphenyl) quinoline-2-

carboxamide, for imaging of metabotropic glutamate receptor 2. ACS Chem. Neurosci., DOI: 10.1021/acschemneuro.7b00098

- 33. Engers, D.W.; Gogliotti, R.D.; Cheung, Y-Y.; Salovich, J.M.; Garcia-
 - Barrantes, P.M.; Daniels, J.S.;Morrison, R.; Jones, C.K.; Blobaum, A.L.; Macor, J.E.; Bronson, J.J.; Conn, P.J.; Lindsley, C.W.; Niswender, C.M.; Hopkins, C.R. Discovery, synthesis and preclinical characterization of *N*-(3-chloro-4-fluorophenyl)-1*H*pyrazolo[4,3-*b*]pyridin-3-amine (VU0418506), a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu₄). *ACS Chem. Neurosci.* **2016**, *7*, 1192-1200.
- 34. Wood, M.R.; Noetzel, M.J.; Melancon, B.J.; Nance, K.D.; Poslunsey, M.S.; Hurtado, M.A.; Luscombe, V.B.; Weiner, R.L.; Rodriguez, A.L.; Lamsal, A.; Chang, S.; Bubser, M.; Blobaum, A.L.; Engers, D.W.; Niswender, C.M.; Jones, C.K.; Brandon, N.J.; Wood, M.W.; Duggan, M.E.; Conn, P.J.; Bridges, T.M.; Lindsley, C.W. Discovery of VU0467485: An M₄ positive allosteric modulator evaluated as a preclinical candidate for the treatment of schizophrenia. *ACS Med. Chem. Lett.* **2017**, *8*, 233-238.
- Conde-Ceide, S.; Martin-Martin, M.L.; Alcazar, J.; Manka, T.; Tong, H.M.; Garcia-Barrantes, P.M.; Lavreysen, H.; Mackie, C.; Vinson, P.N.; Daniels, S.J.; Menges, A.; Niswender, C.M.; Jones, C.K.; Macdonald, G.J.; Steckler, T.; Conn, P.J.; Stauffer, S.R.; Bartolome-Nebreda, J.M.; <u>Lindsley, C.W.</u> Discovery of VU0409551/JNJ-46778212: An mGlu₅ positive allosteric modulator clinical candidate targeting schizophrenia. *ACS Med. Chem. Lett.* **2015**, *6*, 716-720.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

- 56 57 58
- 59 60

128x60mm (300 x 300 DPI)

ACS Medicinal Chemistry Letters

∭N[−]

19, VU6010572

mGlu₃ IC₅₀ = 245 nM, 3.33<u>+</u>0.31 Glu min mGlu₃ pIC₅₀ = 6.61<u>+</u>0.12 inactive at mGlu_{1,2,4,5,6,7,8} DMPK Profile

 $\begin{array}{l} \mbox{Predicted CL}_{hep}\,(h) = 9.61 \mbox{ mL/min/kg}, \\ (r) = \ 50.5 \mbox{ mL/min/kg}, \ (m) = 62.5 \mbox{ mL/min/kg}; \\ f_u\,(m) = \ 0.18, \ (h) = \ 0.18, \ (r) = \ 0.18, \ f_u\,(r \mbox{ brain}) = \ 0.06 \\ \mbox{CYP450 IC}_{50} s\,(3A4, \ 2D6, \ 2C9, \ 1A2) > \ 30 \ \mu M \\ \mbox{ kinetic solublity} = \ 98 \ \mu M \end{array}$

rat brain:plasma K_p = 1.15, K_{p,uu} = 0.40

clean Euorfins secondary pharmacology panel (no activities >50%@10 $\mu M)$

143x50mm (300 x 300 DPI)

148x126mm (150 x 150 DPI)

