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ABSTRACT: Herein, we detail the optimization of the mGlu3 NAM, VU0650786, via a reductionist approach to afford a novel, simplified mGlu3 NAM 
scaffold that engenders potent and selective mGlu3 inhibition (mGlu3 IC50 = 245 nM, mGlu2 IC50 >30 µM) with excellent CNS penetration (rat brain:plasma 
Kp = 1.2, Kp,uu = 0.40).  Moreover, this new chemotype, exemplified by VU6010572, requires only four synthetic steps, displays improved physiochemical 
properties and in vivo efficacy in a mouse tail suspension test (MED = 3 mg/kg i.p.).    

        GRM3, the gene that encodes metabotropic glutamate 
receptor subtype 3 (mGlu3),

 represents a significant locus as-
sociated with schizophrenia, substance abuse disorders and 
bipolar disorder; moreover, single-nucleotide polymorphisms 
(SNPs) within GRM3 are linked to cognitive deficits.1-6  Dual 
mGlu2/3 negative allosteric modulators (NAMs) 1-5 have 
demonstrated therapeutic potential in Alzheimer’s disease, 
anxiety, obsessive-compulsive disorder, autism spectrum dis-
orders and cognition (Figure 1).6-11  Moreover, the mGlu2/3 

NAM decoglurant 5 advanced into human Phase II clinical 
trials for depression.12-14 Despite the therapeutic relevance and 
clinical interest, few highly selective mGlu3 NAMs exist to 
define the contribution of mGlu3 inhibition.15-19  Early mGlu3 

NAM tool compounds 6 and 7 (Figure 2), derived from ‘mo-
lecular switches’ within mGlu5 positive allosteric modulator 
(PAM) ligands,20,21 enabled study of selective mGlu3 inhibition 
and highlighted a key role for mGlu3 in the regulation of syn-
aptic plasticity in medial prefrontal cortex (mPFC) as well as 
antidepressant and anxiolytic activity.22  In particular, 
VU0650786, 8, (mGlu2 IC50 >30 µM, mGlu3 IC50 = 392 nM, 
rat brain:plasma Kp = 1.7; Kp,uu = 0.78) has emerged as a high-
ly valuable mGlu3 NAM in vivo probe; however, it requires a 
nine step synthesis.23 Thus, we hoped to simplify the 
VU0650786 chemotype and also improve upon physicochemi-

cal properties in a next generation mGlu3 NAM in vivo probe 
with a strong intellectual property (IP) positon. 

 

 

Figure 1. Structures of reported dual mGlu2/3 NAMs 1-5 that have provid-
ed target validation for Group II mGlu inhibition in multiple CNS disor-
ders. 
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Figure 2. Structures and in vitro mGlu2 / mGlu3 potencies of reported 
mGlu3 NAMs 6-8, all derived from mGlu5 PAM scaffolds via ‘molecular 
switches’. 

      Using 8 as a lead, our goal was to reduce molecular com-
plexity and enhance physicochemical properties in a next gen-
eration mGlu3 NAM.  We elected to deconstruct the heterobi-
cyclic dihydropyrazolo[1,5-a]pyrazine-4(5H)-one core of 8, 
and replace it with an ethereal, aliphatic linker and either an N-
aryl pyrimidine or N-aryl pyridine head-piece (Figure 3) to 
provide greater conformational flexibility and rapid synthesis.  

 

Figure 3. Optimization plan to deconstruct 8 into more flexible cores 9 
and 10 with improved predicted physicochemical properties. 

      The chemistry to access scaffolds 9 and 10 proved 
straightforward.24  For scaffold 9 (Scheme 1), commercially 
available 2,4-dichloropyrimidine 11 underwent an SNAr reac- 

Scheme 1. Synthesis of Analogues 9a 

 
aReagents and conditions: (a) 2-phenoxyethanol, NaH, DMF, 0 °C to rt, 
46%; (b) K2CO3, DABCO, H2O, 1,4-Dioxane, 70 °C, 83%; (c) 8-
hydroxyquinoline, CuI, K2CO3, DMSO, microwave, 160 °C, 30 min, 16-
45%. 

tion with 2-phenoxyethanol, followed by a second SNAr with 
water to afford pyrimidinone 12.  Finally, a copper-mediated 
N-arylation step delivered analogs 9 in good yields in only 
three steps.24 Similarly, pyridine analogs 10 were all prepared 
in a three step fashion (Scheme 2).  Here, commercial 4-
nitropyridine-1-oxide 13 undergoes an SNAr reaction with 2-
phenoxyethanol to provide 14.  N-oxide migration provides 
the pyridine core, which is then N-alkylated under copper ca-
talysis with aryl boronic acids to provide analogs 10.24 Varia-
tions on this scheme were used to generate analogs 10 where 
the unsubstituted phenyl moiety was replaced with functional-
ized aryl and heteroaryl moieties. 

Scheme 2. Synthesis of Analogues 10a 

 

aReagents and conditions: (a) 2-phenoxyethanol, NaH, DMF, 0 °C to 100 
°C, 81%; (b) Ac2O, microwave 140 °C, 60 min, then 1N LiOH, 50 °C, 
57%; (c) ArB(OH)2, Cu(OAc)2, pyridine, 4Å MS, DCM, air, 44-65%. 

     A limited number of pyrimidine analogs 9 were prepared, as 
SAR was steep and selectivity versus mGlu5 eroded, but Table 
1 highlights key analogs in this series.  While not productive 
en route to a new mGlu3 in vivo probe, 9a was a potent mGlu3 
NAM (IC50 = 295 nM) with no discernable activity at mGlu2 
(IC50 >30 µM). Relative to 8, potency was enhanced, molecu-
lar weight reduced and fraction unbound in plasma doubled 
(rat fu,plasma = 0.16), all of which validated the reductionist ap-
proach.   

Table 1. Structures and activities of analogs 9.a 

 

Entry Ar  mGlu3 IC50 
(µM)a

 

[Glu Min 
±SEM] 

mGlu3 
pIC50 

(±SEM) 

mGlu5 EC50 
(µM)a

 

(pEC50, 
%Glu Max) 

9a 

 

 
0.29 

[3.94+1.1] 
6.53+0.08  

 
1.2 

(5.9, 97) 

9b 

 

 
>10 

[15.5+5.4] 
<5 

 
3.5 (5.5, 77) 

9c 

 

 
1.02 

[3.77+0.76] 
5.99+0.25 

 
0.43  
6.4, 83) 

             aCalcium mobilization assays with mGlu3/Gqi5-CHO cells performed in the 
            presence of an EC80 fixed concentration of glutamate; values represent 
          means from three (n=3) independent experiments performed in triplicate. 
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However, as alluded to above, 9a, while selective versus 
mGlu1,2,4,6,7,8, was an mGlu5 PAM (EC50 = 1.2 µM, 97% Glu 
Max).  Interestingly, 9c was a more potent mGlu5 PAM (EC50 
= 427 nM, 83% Glu Max) than mGlu3 NAM (IC50 = 1.02 µM).  
These finding were not entirely unexpected, as eliminating 
mGlu5 PAM activity was a major facet of the optimization 
effort that delivered 8.23 Would deletion of a single nitrogen 
atom in 9 to yield analogs 10 eliminate the mGlu5 PAM activi-
ty while maintain all of the other favorable properties? 

       Table 2 highlights SAR for the pyridinone analogs 10 
which proved more robust than NAMs 9, with direct analogs 
of 9b and 9c significantly more potent (10b and 10c) mGlu3 
NAMs.  Relative to 8, potency was enhanced, molecular 
weight reduced and fraction unbound in plasma doubled (rat 
fu,plasma = 0.12 to 0.16), all of which further validated the reduc-
tionist approach.  Moreover, all were highly selective versus 
mGlu2 (IC50s > 30 µM), and mGlu5 PAM activity diminished 
(mGlu5 EC50s in the 400 nM to 6 µM ranges).  However, ana-
logs such as 10a and 10c emerged with unique, dual mGlu3 
NAM/mGlu5 PAM pharmacological profiles; in contrast, 10d 
displayed ~18-fold selectivity as an mGlu3 NAM versus mGlu5 
PAM activity.    

 Table 2. Structures and activities of analogs 10.a 

 

Entry Ar  mGlu3 IC50 
(µM)a

 

[Glu Min 
±SEM] 

mGlu3 
pIC50 

(±SEM) 

mGlu5 EC50 
(µM)a

 

(pEC50, % 
Glu Max) 

10a 

 

 
0.93 

[2.69+0.7] 
6.03+0.12  

 
0.56  

(6.2, 97) 

10b 

 

 
0.39 

[3.45+1.1] 
6.41+0.09 

 
1.9  

(5.7, 88) 

10c 

 

 
0.18 

[3.53+1.1] 
6.74+0.09 

 
0.34  

(6.5, 91) 

10d 

 

 
0.34 

[3.63+1.2] 
6.47+0.08 

 
6.0  

(5.2, 87) 

10e CN

F  

 
0.27 

[3.39+1.0] 6.57+0.11 

 
1.3  

(5.9, 27) 

             aCalcium mobilization assays with mGlu3/Gqi5-CHO cells performed in the 
            presence of an EC80 fixed concentration of glutamate; values represent 
          means from three (n=3) independent experiments performed in triplicate. 
 

     In an effort to eliminate mGlu5 PAM activity, we held the 
4-fluorophenyl moiety of the pyridinone constant and sur-
veyed replacements for the western phenyl moiety as well as a 
methyl substituent on the ether chain, generating analogs 15 
(Table 3).24 While mGlu3 activity and selectivity versus mGlu2  

Table 3. Structures and activities of analogs 15.a 

 

Entry Ar (het) R mGlu3 IC50 
(µM)a

 

[Glu Min 
±SEM] 

mGlu3 
pIC50 

(±SEM) 

mGlu5 EC50 
(µM)a

 

(pEC50, % 
Glu Max) 

15a 

 

H 
 

 
0.35 

[3.56+1.1] 
6.46+0.06 

 
1.5 (5.8, 93) 

15b 

 

H  
0.45 

[3.62+1.2] 
6.35+0.04 

 
7.8  

(5.1, 94) 

15c 

 

H  
1.45 

[3.77+0.76] 5.84+0.12 

 
8.8  

(5.1, 82) 

15d 

 

Me  
1.23 

[3.57+0.84] 
5.91+0.14 

 
>30  

(<4.5) 
             aCalcium mobilization assays with mGlu3/Gqi5-CHO cells performed in the 
            presence of an EC80 fixed concentration of glutamate; values represent 
          means from three (n=3) independent experiments performed in triplicate. 

 

was maintained (mGlu2 IC50s > 30 µM), mGlu5 PAM activity 
persisted in 15a-c (mGlu5 EC50s in the 1.7 µM to 9 µM rang-
es), but greatly diminished relative to analogs 10, with the 
pyridine ether moieties.  However, the racemic methyl conge-
ner 15d proved exceptional.   15d was a moderately potent 
mGlu3 NAM (IC50 = 1.2 µM), but proved to be selective ver-
sus both mGlu2 (IC50s > 30 µM) and mGlu5 (EC50s > 30 µM).   
In addition, 15d had a clean CYP450 inhibition profile (IC50 > 
30 µM versus 3A4, 2D6, 2C9 and 1A2), good fraction un-
bound (fu,plasma = 0.04 (rat),  

 

Scheme 3. Synthesis of enantiomers 18 and 19a 
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aReagents and conditions: (a) 4-FPhB(OH)2, Cu(OAc)2, pyridine, 4Å MS, 
DCM, air, 72%; (b) 10% Pd/C, H2 (1 atm), MeOH, 18 h, 99%; (R)-2-
phenoxypropan-1-ol or (S)-2-phenoxypropan-1-ol, PPh3, DtBAD, THF, 
rt,18h, 72-75%.  

 0.10 (human) and fu,brain = 0.05 (rat), was highly CNS pene-
trant in rat (brain plasma Kp = 1.7, Kp,uu = 1.3) and showed 
moderate predicted hepatic clearance (rat CLhep= 43.2 
mL/min/kg, human CLhep=10.7 mL/min/kg; based on micro-
somal intrinsic clearance data).24,25  Thus, efforts focused on 
synthesizing and evaluating the discrete enantiomers of 15d. 

       The synthesis of the (R) and (S) enantiomers of 15d is 
shown in Scheme 3.24  Commercially available pyridine 16 is 
subjected to the standard copper catalyzed arylation with 4-
fluorophenyl boronic acid, followed by 10% Pd/C hydrogena-
tion to provide 17.  A Mitsunobu reaction with either (R)-2-
phenoxypropan-1-ol or (S)-2-phenoxypropan-1-ol, both 
known compounds,24 delivers 18 and 19, respectively in good 
overall yields and enantiopurity.   When assessed in our as-
says, the (R)-enantiomer 18 was devoid of activity at both 
mGlu3 and mGlu2 (IC50s > 30 µM), demonstrating significant 
enantiopreference.   In contrast (Figure 4), the (S)-enantiomer 
19 proved to be a potent mGlu3 NAM (IC50 = 245 nM, pIC50 = 
6.61±0.12, 3.33±0.31) with high selectivity versus not only 
mGlu2 (IC50 > 30 µM) and mGlu5  

 

 

 

Figure 4. Structure, molecular pharmacology and DMPK profile of 19. 

 

(EC50 > 30 µM), but all mGlu receptors (inactive at 
mGlu1,4,6,7,8).  In terms of its DMPK profile, 19 displayed an 
attractive profile with no CYP450 inhibition liabilities (IC50s > 
30 µM), good fraction unbound in plasma (fu,plasmas ~0.18 for 
human, rat and mouse), moderate predicted hepatic clearance 
across species, and, relative to 8, kinetic solubility (PBS buffer 
at pH 7.4) improved 4-fold (98 µM).  In rat, 19 was highly 
CNS penetrant (brain:plasma Kp = 1.15, Kp,uu = 0.40) and 
mouse (Kp = 1.17, Kp,uu = 0.26).  Before any in vivo behavior 
was performed, we also explored broader ancillary pharma-
cology beyond the mGlus in a Eurofins radioligand binding 
panel of 68 GPCRs, ion channels, transporters and nuclear 
hormone receptors.24,26 Gratifyingly, no significant activities 
were noted (no inhibition >50% @ 10 µM).   

 

    With interest in Group II NAMs for depression-related be-
haviors, and as potentially novel antidepressants, we evaluated 
19 in a mouse tail suspension study27,28 side-by-side with a 
new CNS penetrant mGlu2 NAM (20, VU6001966)24,29-32 to 
dissect the role of the individual Group II mGluRs in this par-
adigm.  The two NAMs were administered i.p. and compared 
relative to a 30 mg/kg i.p. dose of ketamine (Figure 5). The 
mGlu3 NAM 19 (VU6010572) showed robust efficacy in this 
model at 3 mg/kg (roughly comparable to the effect elicited by 
ketamine at 30 mg/kg), while the mGlu2 NAM 20 
(VU6001966) was inactive up to 30 mg/kg i.p.  Exposure was 
measured from these studies, and 19 achieved total brain lev-
els of ~1.2 µM (Kp = 1.2, Kp,uu = 0.27 for this mouse PK/PD 
study) at the 3 mg/kg dose (~5-fold above the mGlu3 IC50), 
while 20 achieved total brain levels of ~14 µM (~180-fold 
above the mGlu2 IC50) at the highest dose tested (30 mg/kg 
i.p.). For the majority of our allosteric modulator programs, 
total brain exposure, and not free brain levels, is the best cor-
relate of in vivo efficacy.22,23,33-35 These early data support a 
greater contribution of mGlu3 inhibition for the antidepressant 
effects of dual mGlu2/3 NAMs (and in agreement with previous 
studies with 8),23 but studies are underway in other antidepres-
sant behavioral paradigms and in both mice and rats to 
strengthen these preliminary findings.   

 

Figure 5. Mouse tail suspension test in CD-1 mice with A) mGlu3 19 and 
B) mGlu2 NAM 20.  The MED for mGlu3 19 is 3 mg/kg i.p., while the 
mGlu2 NAM 20 is without effect up to 30 mg/kg in this paradigm.  Keta-
mine (the positive control) displays efficacy at 30 mg/kg in this paradigm. 
Vehicle: 10% Tween 80 in H2O (10 mL/kg), n = 10-14 mice per dose 
group.   *p <0.05 vs. vehicle, **p < 0.01 versus vehicle.24 

 

     In summary, we have discovered the next generation of 
highly selective and CNS penetrant mGlu3 NAMs by a reduc-
tionist strategy that lowered molecular weight, improved phys-
icochemical and DMPK properties, while also reducing the 
synthetic route by 50%, relative to 8.  Moreover, a head-to-
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head comparison of highly selective and CNS penetrant mGlu2 
and mGlu3 NAMs in a mouse tail suspensions test, to assess 
potential antidepressant phenotype, indicated the mGlu3 inhi-
bition is the dominant mGlu subtype responsible for efficacy.  
Further anti-depressant paradigms in both mice and rats are 
underway, and results will be reported in due course. 
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