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Abstract: A stereoselective synthesis of highly substituted and
enantiopure tetrahydropyrans from chiral 7-hydroxy-2-alkenoic imides
and esters is described. Depending on the carboxylic acid derivative the
base-induced cyclization is kinetically or thermodynamically controlled
to deliver either tetrahydropyran stereoisomer selectively.

Numerous  biologically active natural products contain a
tetrahydropyran ring as the central structural element. Most prominent
members of this class of natural products are the acid ionophores,
commonly known as the polyether antibiotics, with a broad spectrum of
activity as antimicrobial and cardiovascular agents.1 Accordingly, they
have been challenging targets for synthetic organic chemists.?

As a general synthetic strategy, the intramolecular conjugate addition of
an alkoxide to an enoate has been widely used for the construction of
tetrahydropyrans.3 This cyclization is known to be a reversible process
affording the tetrahydropyran as mainly one C-2 stereoisomer after the
equilibrium has been reached. The preparation of the requisite chiral
hydroxy enoates, however, is often quite tedious especially when
additional stereogen_ic centers have to be incorporated into the chain.

Recently, we and subsequently others have documented extremely rapid
silyloxy-Cope rearrangements of chiral syn-aldol products with high
levels of stereocontrol®> As a first synthetic application of the
multifunctional products formed upon the rearrangement we wish to
report a stereoselective and very efficient synthesis of highly substituted
and enantiopure tetrahydropyrans. As a special and unprecedented
feature this process provides either C-2 stereoisomer selectively
depending on which carboxylic acid derivative is present in the
cyclization precursor.

Based on well established asymmetric aldol methodology6 the chiral,
silylated syn-aldols 1 were prepared regio- and stereoselectively in good
yields (65-72%). When the aldol products 1 were submitted to the
standard conditions? for the Cope rearrangement (toluene, 180°C, 1-2 h)
a rapid and complete rearrangement occurred. The diastereoselectivity
of the silyloxy-Cope rearrangement was in the range of 15->30:1 as
determined by NMR. Transition state A most likely accounts for the
formation of 2. The acid-catalyzed desilylation was carried out in the
same flask with pTsOH. After chromatographic removal of the minor
diastereomer the sterecopure aldehydes 2 were obtained in 70-80%
overall yield (Scheme 1). The Cope rearrangement of the tiglic aldehyde
derived aldol product 1e afforded aldehyde 2e as a 2:1 epimeric mixture
after desilylation.

The aldehydes 2a-d were chemoselectively reduced with borane to
furnish the unsaturated alcohols 3a-d in high yield (Scheme 2).
Alternatively, the aldehyde moiety in 2 was advantageously used to
introduce another carbon substituent into the chain enantioselectively.
By applying Brown’s allylation procedure’ allylbis(4-isocaranyl)-
borane converted the aldehydes 2a, 2¢, and 2e to the homoallylic
alcohols 3e-g in moderate yield and high selectivity (20:1).

With the alcohols 3a-g in hand the stage was set for the synthesis of the
tetrahydropyrans. When 3a was treated with KOtBu in THF at -78°C for
30 min the tetrahydropyran 4a was formed in 87% yield with a 30:1
diastereoselection (Scheme 3:).8 Prolonged reaction times (up to 5 h) did
not alter this isomeric ratio. KHMDS gave equally good results, other
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Scheme 1. a) 180°C, toluene, 1-2 h; b) pTsOH, toluene, rt, 15 min;
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bases like KH, NaH, and BulLi failed to promote the cyclization at
-78°C. '"H-NMR data® as well as a X-ray crystallographic analysis10
unambiguously established the axial position of the acetyl imide group
in 4a. Thus, we conclude that the cyclization is kinetically controlled to
afford a stable imide enolate B which does not undergo a retro-Michael
reaction with concomitant ring opening.

In order to get some insight into the origin of stereoselectivity the
cyclization was carried out with alcohol 5 bearing the achiral
oxazolidinone (Scheme 3). Tetrahydropyran 6 was obtained as a 15:1
mixture of stereoisomers of which the major isomer had the same
configuration at the newly formed stereogenic center at C-2 (thp
numbering) as 4a. Apparently, the stereochemical outcome of the
cyclization is mainly governed by the stereogenic centers in the chain
with the chiral auxiliary playing a supporting role.

Chart 1 shows the tetrahydropyrans 4a-g prepared in this manner with
yields and selectivities of the cyclization.? It is worth mentioning that
this process provides easy access to a wide range of polyalkyl-
substituted tetrahydropyrans with high levels of stereocontrol. Even the
fully substituted tetrahydropyran 4g was prepared as a 2:1-mixture of
C-5 epimers.

Chart 1. Tetrahydropyrans 4a-g formed upon cyclization of the

enimides 3a-g (KOtBu, THF, -78°C, 30 min).8 X, = oxazolidinone.
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The same cyclizations were then carried out with the o,fB-unsaturated
esters 7 recalling the well-known thermodynamic control in the
cyclization of enoates.> For this purpose the imides 3 were transformed
into the corresponding esters 7 with Ti(OEt)4HEtOH.11 When 7a was
treated with KOtBu in THF for 30 min at -78°C a 3:1-mixture of B- and
o-isomers of tetrahydropyran 8a was formed in quantitative yield.
Raising the temperature to -50°C and carrying out the cyclization for 2 h
furnished the B-isomer (equatorial acetyl ester group) exclusively in
79% yield (Scheme 4). Several more 2,4-, 2,3,4- and 2,3,4,6-substituted
tetrahydropyrans 8 were obtained as single stereoisomers with the
opposite configuration at C-2 as compared to the tetrahydropyran acetyl
imides 4 (Chart 2).

In conclusion, we have achieved a stereodivergent synthesis of highly
substituted and enantiopure tetrahydropyrans. Key steps of this very
efficient approach are the silyloxy-Cope rearrangement of aldol
products recently developed in our laboratory and the intramolecular
conjugate addition of an alkoxide to a o,B-unsaturated carboxylic acid
derivative. The most attractive feature of this process is that either
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Chart 2. Tetrahydropyrans 8a-e formed upon cyclization of the enoates
7a-e (KOtBu, THF, -50°C, 2 h).
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tetrahydropyran C-2 stereoisomer is available upon cyclization. 1

Extensions of this work towards the synthesis of natural products are
currently underway in our laboratory.
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compounds were fully characterized by NMR, IR, MS, HRMS
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The oxazolidinone in 4a was exchanged for the camphor sultam
described by Oppolzer by the sequence: 1. LiOH/THF/H,O, 2.
(COCl),/DMF/CH,Cl,, 3. BuLi/ D-(-)-camphor sultam. The
resulting tetrahydropyran 9 gave nice crystals suitable for X-ray
crystallography.
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Cambridge Crystallographic Data Centre and may be ordered
from: The Director, CCDC, 12 Union Road, Cambridge, CB21EZ,
UK.
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