

Diruthenium Phenylacetylide Complexes Bearing *para-/meta-*Amino Phenyl Substituents

Steven P. Cummings, Zhi Cao, Carl W. Liskey, Alex R. Geanes, Phillip E. Fanwick, Kerry M. Hassell, and Tong Ren*

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907

Received April 3, 2010

Presented herein is the synthesis and characterization of four diruthenium(II,III) compounds of formulas $Ru_2(Xap)_4(C \equiv C-C_6H_4-4-NH_2)$ (Xap is 2-anilinopyridinate, **1a**; and 2-(3,5-dimethoxy)-anilinopyridinate, **1b**) and $Ru_2(Xap)_4(C \equiv C-C_6H_4-3-NH_2)$ (**2a/2b**). X-ray structural studies of compounds **1b** and **2a** revealed minimal changes in the coordination sphere of the Ru_2 core. Voltammetric measurements showed that compounds **1** exhibit three one-electron redox processes: a reversible reduction of Ru_2 , a reversible oxidation of Ru_2 , and a quasi-reversible oxidation of an amino group. Compounds **2** display the same Ru_2 -based redox processes but not the $-NH_2$ oxidation. Compounds **1a/1b** were successfully converted to the corresponding diazonium salts $[Ru_2(Xap)_4-(C \equiv C-C_6H_4-4-N_2)](BF_4)$ (**3a/3b**) via oxidation by nitrosonium tetrafluoroborate, which was generated in situ from *t*-BuONO and BF₃. However, the attempt to convert compounds **2** to the corresponding diazonium salts was unsuccessful. DFT calculations of model compounds were performed to rationalize some unusual structural and electrochemical characteristics observed for compounds **1/2**.

Introduction

The continuous scaling of Si-based CMOS transistors has become increasingly challenging due to the materials limitation such as the lack of effective dielectric materials at nanometer scale, and hybrid transistors based on the combination of organic molecules and Si-based CMOS devices has been speculated as a promising alternative.¹ As an essential starting point for molecule–CMOS hybrids, covalent attachment of organic molecules to both flat and porous Si surfaces has received intense interest from both chemists and engineers during the last two decades.^{2–4} This is typically accomplished on the basis of a H-passivated Si surface that is produced by etching of the native SiO₂ layer with a solution of HF or NH₄F.^{3,4} Organic molecules with terminal functional groups such as alkynes, alkenes, or diazonium can be grafted onto a H–Si surface under thermal, photochemical, or electrochemical conditions.^{3,5} Recently, the laboratories of Tour and Paul succeeded in immobilizing polyoxo cluster $(Mo_6)^6$ and Fe or Fe/Ru phenylacetylide complexes,⁷ respectively, on p-type H–Si surfaces, demonstrating the feasibility of functionalization with inorganic/organometallic species.

There has been a sustained interest in using metal alkynyl compounds as molecular wires, active components of molecular devices, or electro-optical materials from many laboratories around the world.^{8,9} Efforts from our laboratory focus on diruthenium alkynyl compounds,¹⁰ and both wire characteristics and conductance switching have been documented.¹¹

^{*}To whom correspondence should be addressed. E-mail: tren@ purdue.edu.

⁽¹⁾ International Technology Roadmap for Semiconductors: Executive Summary (http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/ 2009_ExecSum.pdf); 2009. Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D. Anal. Chem. Acta **2006**, 568, 84. Gowda, S.; Mathur, G.; Li, Q. L.; Surthi, S.; Misra, V. IEEE Trans. Nanotech. **2006**, 5, 258.

⁽²⁾ Linford, M. R.; Chidsey, C. E. D. J. Am. Chem. Soc. 1993, 115, 12631.

⁽³⁾ Buriak, J. M. Chem. Rev. 2002, 102, 1271.

⁽⁴⁾ Bent, S. F. Surf. Sci. 2002, 500, 879.

⁽⁵⁾ Stewart, M. P.; Maya, F.; Kosynkin, D. V.; Dirk, S. M.; Stapleton, J. J.; McGuiness, C. L.; Allara, D. L.; Tour, J. M. J. Am. Chem. Soc. **2004**, *126*, 370. Tour, J. M. J. Org. Chem. **2007**, *72*, 7477.

⁽⁶⁾ He, T.; Ding, H. J.; Peor, N.; Lu, M.; Corley, D. A.; Chen, B.; Ofir, Y.; Gao, Y. L.; Yitzchaik, S.; Tour, J. M. *J. Am. Chem. Soc.* **2008**, *130*, 1699. Lu, M.; Nolte, W. M.; He, T.; Corley, D. A.; Tour, J. M. *Chem. Mater.* **2009**, *21*, 442.

⁽⁷⁾ Gauthier, N.; Argouarch, G.; Paul, F.; Humphrey, M. G.; Toupet, L.; Ababou-Girard, S.; Sabbah, H.; Hapiot, P.; Fabre, B. *Adv. Mater.* **2008**, *20*, 1952.

⁽⁸⁾ Paul, F.; Lapinte, C. Coord. Chem. Rev. 1998, 178-180, 431. Joachim, C.; Gimzewski, J. K.; Aviram, A. Nature 2000, 408, 541. Paul, F.; Lapinte, C., In Unusual Structures and Physical Properties in Organometallic Chemistry; Gielen, M.; Willem, R.; Wrackmeyer, B., Eds.; Wiley: West Sussex, 2002. Low, P. J. Dalton Trans. 2005, 2821. Wong, W.-Y.; Ho, C.-L. Coord. Chem. Rev. 2006, 250, 2627. Wong, W. Y. Coord. Chem. Rev. 2007, 251, 2400. Gatteschi, D.; Cornia, A.; Mannini, M.; Sessoli, R. Inorg. Chem. 2009, 48, 3408-3419. Schull, T. L.; Kushmerick, J. G.; Patterson, C. H.; George, C.; Moore, M. H.; Pollack, S. K.; Shashidhar, R. *J. Am. Chem. Soc.* **2003**, *125*, 3202. Getty, S. A.; Engtrakul, C.; Wang, L.; Liu, R.; Ke, S.-H.; Baranger, H. U.; Yang, W.; Fuhrer, M. S.; Sita, L. R. *Phys. Rev. B* **2005**, *71*, 241401(R). Kim, B.; Beebe, J. M.; Olivier, C.; Rigaut, S.; Touchard, D.; Kushmerick, J. G.; Zhu, X.-Y.; Frisbie, C. D. J. Phys. Chem. C 2007, 111, 7521. Liu, K.; Wang, X. H.; Wang, F. S. ACS Nano 2008, 2, 2315. Vitaliano, R.; Fratoddi, I.; Venditti, I.; Roviello, G.; Battocchio, C.; Polzonetti, G.; Russo, M. V. J. Phys. Chem. A 2009, 113, 14730. Olivier, C.; Costuas, K.; Choua, S.; Maurel, V.; Turek, P.; Saillard, J.-Y.; Touchard, D.; Rigaut, S. J. Am. Chem. Soc. 2010, 132, 5638.

⁽⁹⁾ Wong, K. M.-C.; Hung, L.-L.; Lam, W. H.; Zhu, N.; Yam, V. W.-W. J. Am. Chem. Soc. 2007, 129, 4350.

⁽¹⁰⁾ Ren, T. Organometallics 2005, 24, 4854.

⁽¹¹⁾ Blum, A. S.; Ren, T.; Parish, D. A.; Trammell, S. A.; Moore, M. H.; Kushmerick, J. G.; Xu, G.-L.; Deschamps, J. R.; Pollack, S. K.; Shashidhar, R. *J. Am. Chem. Soc.* **2005**, *127*, 10010. Mahapatro, A. K.; Ying, J.; Ren, T.; Janes, D. B. *Nano Lett* **2008**, *8*, 2131.

Among several types of diruthenium alkyl compounds attainable, those based on $\operatorname{Ru}_2(ap)_4$ (ap is 2-anilinopyridinate) are particularly attractive due to their rich and robust redox properties, the choice between mono- and bis-alkynylation, and possibility of ligand engineering.^{12–17} Previously, we realized the synthesis of $Ru_2(ap)_4$ -alkynyls with the thiol (-SH) alligator clip,¹⁸ which were used in the said device work through the formation of the Au-S bond.¹¹ Described in this contribution are the preparation of $Ru_2(Xap)_4$ phenylacetylide compounds containing either a 4- or 3-NH2 phenyl substituent and the conversion of 4-NH₂ compounds to the corresponding diazonium salts, which can function as an "alligator clip" for the Si surface.

Results and Discussion

Similar to the earlier studies of other $\text{Ru}_2(ap)_4$ monoalk-ynyl compounds, ^{13,16} compounds **1** and **2** were prepared via anion metathesis reactions between Ru₂(Xap)₄Cl and LiC≡ CC₆H₄-NH₂ (in slight excess) as outlined in Scheme 1. Purification via silica column using CH₂Cl₂-hexanes resulted in compounds 1 and 2 as dark purple and green microcrystalline solids, respectively, in yields of 60-85%. Both compounds 1 and 2 are paramagnetic with effective magnetic moments between 3.5 and $3.9 \mu_B$, which are consistent with a ground state of S = 3/2.

The diazonium derivatives 3 were prepared using a procedure modified from that of Doyle and Bryker:¹⁹ to a THF solution containing 1 was added boron trifluoride diethyl etherate, followed by tert-butyl nitrite, which resulted in the precipitation of diazonium salts 3.

(12) Chakravarty, A. R.; Cotton, F. A. Inorg. Chim. Acta 1986, 113, 19.

(16) Xu, G.-L.; Cordova, A.; Ren, T. J. Cluster Sci. 2004, 15, 413.
(17) Xi, B.; Xu, G.-L.; Ying, J.-W.; Han, H.-L.; Cordova, A.; Ren, T. J. Organomet. Chem. 2008, 693, 1656.

(18) Ren, T.; Parish, D. A.; Xu, G.-L.; Moore, M. H.; Deschamps, J. R.; Ying, J.-W.; Pollack, S. K.; Schull, T. L.; Shashidhar, R. J. Organomet. Chem. 2005, 690, 4734.

(19) Doyle, M. P.; Bryker, W. J. J. Org. Chem. 1979, 44, 1572.

Figure 1. Structural plot of compound 1b. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å): Ru1-Ru2, 2.329(10); Ru1-C1, 2.097(10); Ru1-Nav, 2.093[7]; Ru2-Nav, 2.022[7]; C1-C2, 1.178(14); C2-C3, 1.470(16). Bond angles (deg): Ru2-Ru1-C1, 178.9(2); Ru1-C1-C2, 168.4(8); C1-C2-C3, 176.5(11).

Figure 2. Structural plot of compound 2a. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å): Ru1-Ru2, 2.3420(5); Ru1-C45, 2.094(6); Ru1-Nav, 2.105[5]; Ru2-Nav, 2.037[4]; C45-C46, 1.217(8). Bond angles (deg): Ru2-Ru1-C45, 178.58(16); Ru1-C45-C46, 174.2(5); C45-C46-C47, 178.9(7).

The molecular structures of both compounds 1b and 2a were determined using X-ray single-crystal diffraction, and their structural plots are presented in Figures 1 and 2, respectively. Both compounds were crystallized in the space group P1, and the asymmetric unit contains one independent molecule in the case of 1b and two in the case of 2a. Both independent molecules in 2a exhibit very similar geometric parameters, and only one is shown in Figure 2.

It is clear from Figures 1 and 2 that the coordination geometry around the Ru₂ core in both 1b and 2a is very similar to those determined earlier for related Ru₂(ap)₄-(C≡CR) compounds.^{10,20} In particular, the Ru–Ru (2.329(10)/2.3420(5) Å for 1b/2a) and Ru-C (2.097(10)/2.3420(5)2.094(6) Å for 1b/2a bond lengths are the same as those reported for $Ru_2(ap)_4(C \equiv CPh)$ within experimental error.¹² The average Ru1-N(pyridyl) and Ru2-N(anilino) bond lengths for both 1b and 2a are comparable to those tabulated for other related $\operatorname{Ru}_2(ap)_4(C \equiv CR)$ compounds.¹⁰

A curious feature about 1b is the significant deviation of the Ru1-C1-C2 linkage from linearity, which results in an apparent bend of the 4-NH₂C₆H₄ ring from the

⁽¹³⁾ Zou, G.; Alvarez, J. C.; Ren, T. J. Organomet. Chem. 2000, 596, 152.

⁽¹⁴⁾ Ren, T.; Zou, G.; Alvarez, J. C. Chem. Commun. 2000, 1197. Ren, T. Organometallics 2002, 21, 732. Xu, G.-L.; Zou, G.; Ni, Y.-H.; DeRosa, M. C.; Crutchley, R. J.; Ren, T. J. Am. Chem. Soc. 2003, 125, 10057. Shi, Y.; Yee, G. T.; Wang, G.; Ren, T. J. Am. Chem. Soc. **2004**, *126*, 10552. Bear, J. L.; Li, Y.; Han, B.; Caemelbecke, E. V.; Kadish, K. M. Inorg. Chem. **1997**, 36, 5449. Kadish, K. M.; Phan, T. D.; Wang, L.-L.; Giribabu, L.; Thuriere, A.; Wellhoff, J.; Huang, S.; Caemelbecke, E. V.; Bear, J. L. *Inorg. Chem.* **2004**, 43, 4825. Nguyen, M.; Phan, T.; Caemelbecke, E. V.; Kajonkijya, W.; Bear, J. L.; Kadish, K. M. Inorg. Chem. 2008, 47, 7775.
 (15) Xu, G.-L.; Ren, T. Organometallics 2001, 20, 2400.

Figure 3. CVs of compounds 1 and 2 recorded in THF at a scan rate of 0.10 V/s.

Ru2-Ru1-C1 axis (Figure 1). In contrast, the Ru1-C45–C46 angle in 2a (174.2(5)°) is more in line with typical $\operatorname{Ru}-\operatorname{C}_{\alpha}-\operatorname{C}_{\beta}$ (175° or higher) angles found for other $\operatorname{Ru}_{2^{-1}}(ap)_{4}(C \equiv CR)$ compounds.^{10,20} Inspection of the packing diagram of 1b did not reveal any significant intermolecular interaction involving the $4-NH_2C_6H_4$ ring, hinting that the bend may have an electronic origin. Structural examples of metal-\sigma-arylacetylides containing -NH2 aryl substituent are sparse, and entries found in the CSD include those of the 4-NH₂ substituent with M as Pt,²¹ Au,^{9,22} Fe,^{23,24} and Ru²⁵ and those of the 2-NH₂ substituent with M as Pt²⁶ and Re.²⁷ There is no reported structure for the [M]-C=C-C₆H₄-3-NH₂ type. In most of the cases, the nonlinearity of $M-C_{\alpha}-C_{\beta}$ linkage is small but noticeable from the structural plots and typically went unnoticed by the authors. Exceptions to this are the detailed and thorough studies of the M^{II} -C=C-C₆H₄-4-X series (M = Fe and Ru) by Paul and Lapinte,^{23,25} where a significant bend in the M-C_{α}-C_{β} linkage was noticed for compounds with both the electron donor (NH_2) and acceptor (NO_2) substituents.

Similar to the established $\operatorname{Ru}_2(ap)_4(C \equiv CR)$ compounds, compounds 1 and 2 display rich redox chemistry with three one-electron waves attributed to the Ru₂ center: a reversible oxidation (A, Ru₂(II,III) to Ru₂(III,III)), a reversible reduction (B, Ru₂(II,III) to Ru₂(II,II)), and subsequent irreversible reduction (C, Ru₂(II,II) to Ru₂(II,I)), as shown in Figure 3. The irreversibility of couple C is due to the dissociation of the axial acetylide ligand upon the second

(26) Fratoddi, I.; Delfini, M.; Sciubba, F.; Hursthouse, M. B.; Ogilvie, H. R.; Russo, M. V. J. Organomet. Chem. **2006**, 691, 5920.

(27) Liddle, B. J.; Lindeman, S. V.; Reger, D. L.; Gardinier, J. R. Inorg. Chem. 2007, 46, 8484.

Figure 4. CV of compound 3a recorded in MeCN at a scan rate of 0.10 V/s. The cathodic region was scanned continuously.

reduction.¹⁰ For compounds **1a/b**, there is an additional quasireversible oxidation around 0.88 V that is attributed to the 4-NH₂ group. The corresponding peak, however, was not observed for compounds **2** within the potential window allowed by THF. Voltammetric measurements conducted in CH₂Cl₂, which allows for a more positive potential window, did not reveal a NH₂ oxidation either. It is obvious from Figure 3 that the CVs of **1a** and **1b** are nearly identical, and the same is true about those of **2a** and **2b**. This is consistent with the fact that the substitution on the anilino ring causes very minimal change in the electronic properties of Ru₂(*Xap*)₄ species.^{16,17} Examination of $E_{1/2}$ data also reveals that the peaks attributed to Ru₂ in **2** are generally 20–40 mV more positive than those in **1**, which is due to the weaker electron-donating ability of 3-NH₂ (Hammett constant σ (3-NH₂) = -0.09) than that of 4-NH₂ (σ (4-NH₂) = -0.30).

Diazonium salts are generally prone to quick degradation when subjected to demanding techniques such as MS and elemental analysis. An ESI-MS study of 3a led to the observation of only fragments (see the Experimental Section below). Hence, diazonium salts are often characterized with IR and ¹H NMR.⁶ Although the paramagnetic nature of **3** prevents a meaningful NMR study, FT-IR of 3 revealed the characteristic N=N stretch at 2228 cm⁻¹. Voltammetric measurement of 3, shown in Figure 4 for 3a, also offers some insight and indirect proof of the presence of diazonium. For the diazonium salt 3a, its open circuit potential (OCP) is shifted by +0.37 V from that of **1a**. The anodic region features a reversible oxidation and a quasi-reversible oxidation. The initial scan of the cathodic region revealed four quasi-reversible reductions, labeled as B1, B2, C1, and C2. Interestingly, the first three waves gradually diminished when the CV was scanned continuously (Figure 4), while C2 remains throughout. This type of behavior is expected for a diazonium species: waves B1, B2, and C1 originate from 3a and disappear as 3a degrades under electrolytic conditions; wave C2 is likely due to a degradation product that deposits on the glassy carbon working electrode.

Both compounds 1 and 2 exhibit two intense peaks with peak maxima at 480–488 and 744–770 nm, as shown in Figure 5, and this feature is consistent with the prior studies of related $\text{Ru}_2(ap)_4(\text{C}=\text{CR})$ -type compounds.^{10,13,15,17,28}

⁽²¹⁾ Deeming, A. J.; Hogarth, G.; Lee, M.-y. V.; Saha, M.; Redmond,

S. P.; Phetmung, H. T.; Orpen, A. G. Inorg. Chim. Acta 2000, 309, 109.
 (22) Hogarth, G.; Alvarez-Falcón, M. M. Inorg. Chim. Acta 2005, 358, 1386.

⁽²³⁾ Costuas, K.; Paul, F.; Toupet, L.; Halet, J.-F.; Lapinte, C. Organometallics 2004, 23, 2053.

⁽²⁴⁾ Paul, F.; Toupet, L.; Thepot, J. Y.; Costuas, K.; Halet, J. F.; Lapinte, C. *Organometallics* **2005**, *24*, 5464.

⁽²⁵⁾ Paul, F.; Ellis, B. G.; Bruce, M. I.; Toupet, L.; Roisnel, T.; Costuas, K.; Halet, J.-F.; Lapinte, C. Organometallics **2006**, *25*, 649.

⁽²⁸⁾ Zhang, L.; Xi, B.; Liu, I. P. C.; Choudhuri, M. M. R.; Crutchley, R. J.; Updegraff, J. B.; Protasiewicz, J. D.; Ren, T. *Inorg. Chem.* **2009**, *48*, 5187.

Figure 5. Vis–NIR spectra of compounds 1 and 2 recorded in THF.

On the basis of our recent TD-DFT study of a model compound,²⁸ the higher energy peak is assigned to the transition to the $\delta^*(Ru-Ru)$ orbital from both the $\pi(Ru-Ru)$ and $\pi(Ru-N)$ orbitals, while the lower energy peak is primarily the $\pi(C \equiv C)$ to $\delta^*(Ru - Ru)$ transition. Both compounds 1a and **1b** also exhibit a broad shoulder trailing off the high-energy band, which is absent in the spectra of both compounds 2 and other $\operatorname{Ru}_2(ap)_4(C \equiv CR)$ -type compounds studied earlier. This feature perhaps accounts for the purple color of 1 in THF, which is distinctly different from the brown color of other $Ru_2(ap)_4$ - $(C \equiv CR)$ -type compounds including 2. The appearance of this shoulder is likely due to the lone pair of p-NH₂, although the exact nature of the transition remains unclear. The visible region of the absorption spectrum of 3a (Supporting Information) features a single peak at 676 nm. The contrast between the spectral features of compounds 1 and 3 reflects a significant stabilization of both the $\pi(Ru-Ru)$ and $\pi(C=C)$ orbitals by the diazonium group, which blue-shifts the band from around 750 nm in 1 to 676 nm in 3, and the high-energy peak around 480 nm in 1 into the UV region.

Because of the interest in using compounds 1 and 2 as the precursors for molecule-CMOS hybrid devices, we are particularly interested in their electronic structures. Seeking the possible electronic origins of several peculiar experimental observations, such as the bend of the $-CCC_6H_4$ -4-NH₂ fragment and the difficulty in oxidizing the 3-NH₂ derivative, DFT calculations were performed on the models for compounds 1 and 2, namely, model 1, model 1', and model 2. The geometries of model 1 and model 2 were optimized from the crystal structures of 1b and 2a, respectively, with the only simplification being the replacement of anilino methoxy substituents with H atoms in the former. The bond lengths and angles around the Ru₂ core in the optimized geometries match well with those from the crystal structures, and they are given in the Supporting Information. The geometry of model 1' was idealized from that of model 1 by restricting both Ru–Ru– C_{α} and Ru– C_{α} – C_{β} to 180°.

It is well established on the basis of the room-temperature effective magnetic moment that the $\operatorname{Ru}_2(ap)_4(C \equiv CR)$ -type compounds have an S = 3/2 ground state.¹⁰ Consistent with

our prior DFT study of a related model compound,²⁸ spinunrestricted DFT calculations for model **1**, model **1**', and model **2** all converged to the same configuration with HOMO, HOMO-1, and HOMO-2 being energetically close and singly occupied. The computed molecular orbital diagrams for the three model compounds are shown in Figure 6.

It is clear from Figure 6 that the HOMO of model 1 is predominantly the $\delta^*(Ru-Ru)$ orbital with an additional contribution from the $\pi^*(py)$. The HOMO-1 is primarily made of the *antibonding* combination of $\pi^*(Ru-Ru)$ and π (C=C) orbitals, while the HOMO-2 is a even mix between the antibonding combination of $\pi^*(Ru-Ru)$ and $\pi(C=C)$ orbitals and the π^* orbitals of both pyridinyl and anilino rings. Clearly, the π -interactions between the Ru₂ core and axial acetylide are dominated by the filled-filled type first proposed by Lichtenberger.²⁹ The DFT results of model **1** unambiguously confirm the ground-state configuration of $\sigma^2 \pi^4 \delta^2 \pi^{*2} \delta^{*1}$ for the Ru₂(II,III) core.^{10,30} The LUMO of model 1 is largely a combination of the π^* orbitals of four pyridinyl rings and the $d_{x^2-y^2}$ orbital of Ru(py), while an early study resulted in a LUMO of $\sigma^*(Ru-Ru)$ nature.²⁸ The discrepancy is likely due to the oversimplification in the early calculation, where all anilino rings were replaced by methyl groups and arylacetylide was replaced by simple acetylide $(-C \equiv CH)$. The DFT calculation of model 1' yielded results, both the make up and energies of the frontier MOs, nearly identical to those of model 1. The only subtle difference is that the energy of HOMO-1 in model 1' is 0.03 eV higher than that in model **1**.

As shown in Figure 6, the frontier orbitals of model 2 are similar to those of model 1 in both energies and general composition, and the occupancy conforms to a $\pi^{*2}\delta^{*1}$ configuration. Nevertheless, there exists a significant contrast in both the HOMO-1 and HOMO-2 orbitals between the two models. In model 1, the lone pair of 4-NH₂ contributes significantly to both orbitals through the mixing with the aryl π orbitals. On the other hand, contributions from both the lone pair of 3-NH₂ and the aryl π orbitals are hardly noticeable in the HOMO-1 and HOMO-2 orbitals of model 2. Instead, the π^* orbitals from both pyridyls and anilino rings make up a significant portion of HOMO-1 and HOMO-2. The absence of $-NH_2$ contribution indicates that the lone pair of the 3-NH₂ group is deeply buried, making its oxidation energetically challenging.

In the course of investigating many $[M^{II}]$ -C=C-C₆H₄-4-X (M = Fe and Ru) type compounds, Lapinte and co-workers proposed that the quinoidal resonance structure (analogous to **B** in Scheme 2) may contribute significantly to the electronic properties of metal-acetylide species in addition to the traditional arylacetylide structure (**A** in Scheme 2) with $X = NH_2$.^{23-25,31} This classical valence bond (VB) description is clearly applicable to our compounds **1a/1b**, as corroborated by the N-lone pair contribution to both the HOMO-1 and HOMO-2 from the model **1** calculation. The classical VB theory also suggests that a significant contribution by the 3-NH₂ lone pair would invoke a higher

⁽²⁹⁾ Lichtenberger, D. L.; Renshaw, S. K.; Bullock, R. M. J. Am. Chem. Soc. **1993**, *115*, 3276. Lichtenberger, D. L.; Renshaw, S. K.; Wong, A.; Tagge, C. D. Organometallics **1993**, *12*, 3522.

⁽³⁰⁾ Angaridis, P. In *Multiple Bonds between Metal Atoms*; Cotton, F. A.; Murillo, C. A.; Walton, R. A., Eds.; Springer Science and Business Media, Inc.: New York, 2005.

⁽³¹⁾ Denis, R.; Toupet, L.; Paul, F.; Lapinte, C. Organometallics 2000, 19, 4240.

Figure 6. Molecular orbital diagrams for model 1, model 1', and model 2 obtained from DFT calculations.

Scheme 2. Resonance Structures Available to Compounds 1

energy non-Kekulé-type resonance structure,³² and hence is energetically unfavorable. This is again confirmed by the absence of the N-lone pair contribution to either the HOMO-1 and HOMO-2 from the model **2** calculation. The other possible quinoidal structure, **C**, is less likely for neutral **1**, but contributes to the stabilization of the cation upon $-NH_2$ oxidation. The unavailability of such a resonance structure for the 3-NH₂ species (**2**) may explain the difficulty in oxidizing 3-NH₂.

Conclusion

Several diruthenium arylacetylide compounds with 4-/3-NH₂ substituents have been prepared and characterized. The 4-NH₂ species can be readily converted to the corresponding diazonium

3 using *tert*-butyl nitrite as the oxidant. The 3-NH₂ analogues cannot be converted similarly. The contrast between two compounds was rationalized based on DFT studies. Currently, the grafting of **3** onto H–Si surfaces is being explored in our laboratory.

Experimental Section

General Procedures. Trimethylsilylacetylene (TMS-acetylene) was purchased from GFS Chemicals; BF3 • etherate, tert-butyl nitrite, and n-BuLi (2.5 M in hexanes) were purchased from Aldrich. THF was distilled over Na/benzophenone under an N2 atmosphere. Ru₂(ap)₄Cl,¹³ Ru₂(DiMeOap)₄Cl,¹⁷ 1-amino-4-trimethylsilylethynylbenzene,³³ and 1-amino-3-trimethylsilylethynylbenzene³⁴ were prepared according to literature procedures. 1-Amino-4-trimethylsilylethynylbenzene and 1-amino-3-trimethylsilvlethynylbenzene were deprotected via K₂CO₃ in MeOH-THF. All reactions were done using Schlenk techniques under nitrogen and monitored by TLC with EtOAc-hexanes (v/v, 3:7). UVvis-NIR spectra were obtained with a JASCO V-670 UV-vis-NIR spectrophotometer. Infrared spectra were obtained on a JASCO FT-IR 6300 spectrometer via ATR on a ZnSe crystal. Magnetic susceptibility data were measured at 293 K with a Johnson Matthey Mark-1 magnetic susceptibility balance. Elemental analysis was performed by Atlantic Microlab, Norcross, GA. Cyclic voltammograms were recorded in 0.2 M n-Bu₄NPF₆ and a 1.0 mM diruthenium species solution (THF, N2 degassed) on a CHI620A voltammetric analyzer with a glassy carbon working electrode (diameter = 2 mm), a Pt-wire counter electrode, and an Ag/AgCl reference electrode with ferrocene used as an internal reference (0.620 V).

⁽³²⁾ Borden, W. T.; Iwamura, H.; Berson, J. A. Acc. Chem. Res. 1994, 27, 109.

⁽³³⁾ Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis **1980**, 627.

⁽³⁴⁾ Lavastre, O.; Cabioch, S.; Dixneuf, P. H.; Vohlidal, J. Tetrahedron 1997, 53, 7595.

Preparation of $Ru_2(ap)_4$ -($C_2C_6H_4$ -4-NH₂) (1a). $Ru_2(ap)_4Cl$ (196 mg, 0.213 mmol), dried under vacuum for 30 h at 80 °C, was dissolved in 25 mL of THF. To the Schlenk flask containing 4-ethynylaniline (50 mg, 0.42 mmol) dissolved in 5 mL of THF was added 200 µL of 2.5 M n-BuLi in hexanes (0.50 mmol) at -70 °C. Upon warming to ambient temperature, the lithiated ligand was transferred via cannula to the $Ru_2(ap)_4Cl$ solution. The reaction mixture turned black and was allowed to stir overnight. The reaction mixture was filtered through a silica plug deactivated by 10% v/v TEA-hexanes and purified on a silica column with CH₂Cl₂-hexanes (v/v, 1:10 to 1:2) to yield 169 mg of 1a as a purple crystalline solid (80% based on Ru). Data for **1a**: $R_f = 0.22$; ESI-MS, $[M]^+$, 996.16; visible spectra, λ_{max} (nm, ε (M⁻¹ cm⁻¹)) 484(7200), 744(5200); IR (cm⁻¹) NH₂ 3377(m), C=C 2033(m). Anal. Calcd for Ru₂C₅₂H₄₂N₉O₃ (1a·2THF·1H₂O) (found): C, 62.27 (62.50); H, 5.23 (5.18); N, 10.89 (10.56). Cyclic voltammogram $[E_{1/2}/V, \Delta E_p/V, i_{backward}/V]$ i_{forward}]: $E_{\text{pa}}(-\mathbf{NH_2})$, 0.882; **A**, 0.389, 0.031, 0.80; **B**, -0.931, 0.033, 0.81; $E_{\rm pc}(\mathbf{C})$, -2.082. $\mu_{\rm eff}$: 3.57 $\mu_{\rm B}$.

Preparation of $Ru_2(ap)_4$ -($C_2C_6H_4$ -3-NH₂) (2a). The synthesis of 2a followed the procedure for 1a using 1.38 g of $Ru_2(ap)_4Cl$ (1.51 mmol), 295 mg (2.52 mmol) of m-ethynylaniline, and 1.0 mL of 2.5 M n-BuLi. After filtering through a silica pad the residue was loaded onto deactivated silica gel and eluted via hexanes-EtOAc-Et₃N beginning with 20:1:0.1 and slowly increasing EtOAc to 2:1:0.01, yielding 940 mg (63%) of brown material. Data for **2a**: $R_f = 0.20$; ESI-MS, $[M]^+$, 996.16; visible spectra, $\lambda_{\max}(nm, \varepsilon (M^{-1} \text{ cm}^{-1}))$ 480(12 900), 748(8700); IR (cm⁻¹) NH₂ 3367(m), C=C 2047(w). Anal. Calcd for Ru₂C₅₂H₄₂N₉ (found): C, 62.76 (62.95); H, 4.25 (4.15); N, 12.67 (12.64). Cyclic voltammogram $[E_{1/2}/V, \Delta E_p/V, i_{backward}/i_{forward}]$: $E_{pa}(-NH_2)$, 1.132; **A**, 0.433, 0.027, 0.84; **B**, -0.884, 0.028, 0.84; $E_{pc}(\mathbf{C})$, $-2.036. \,\mu_{\text{eff}}: 3.73 \,\mu_{\text{B}}.$

Preparation of $Ru_2(diMeOap)_4$ -(C₂C₆H₄-4-NH₂) (1b). The synthesis and purification of 1b followed the procedure for 1a using 580 mg (0.501 mmol) of Ru₂(diMeOap)₄Cl, 139 mg (1.19 mmol) of *p*-ethynylaniline, and 500 μ L (1.25 mmol) of 2.5 M n-BuLi to yield 400 mg (65%) of a purple solid. Data for **1b**: $R_f = 0.08$; ESI-MS, [M]⁺, 1235.30; visible spectra, λ_{max} (nm, ε (M⁻¹ cm⁻¹)) 488(8400), 767(5800); IR (cm⁻¹) NH₂ 3371(m), C=C 2033(m). Anal. Calcd for $Ru_2C_{68}H_{80}N_9O_{13}$ (found): C, 58.34 (57.91); H, 4.73 (4.69); N, 10.20 (9.90). Cyclic voltammogram $[E_{1/2}/V, \Delta E_p/V, i_{backward}/i_{forward}]$: $E_{pa}(-NH_2)$, 0.878; **A**, 0.393, 0.026, 0.73; **B**, -0.907, 0.030, 0.94; $E_{pc}(\mathbf{C})$, $-2.067. \,\mu_{\text{eff}}: 3.79 \,\mu_{\text{B}}.$

Preparation of Ru₂(diMeOap)₄-(C₂C₆H₄-3-NH₂) (2b). The synthesis and purification of 2b followed the procedure for 1a using 150 mg (0.132 mmol) of Ru₂(diMeOap)₄Cl, 22 mg (0.188 mmol) of m-ethynylaniline, and 90 µL (0.225 mmol) of 2.5 M *n*-BuLi to yield 120 mg (75%) of a brown solid. Data for **2b**: $R_f = 0.12$; ESI-MS, [M]⁺, 1235.30; visible spectra, λ_{max} (nm, ε (M⁻¹ cm⁻¹)) 485(10100), 770(6300); IR (cm⁻¹) NH₂ 3371(m), C=C 2048(w). Anal. Calcd for $Ru_2C_{60}H_{58}N_9O_8$ (found): C, 58.34 (57.91); H, 4.73 (4.69); N, 10.20 (9.90). Cyclic voltammogram $[E_{1/2}/V, \Delta E_p/V, i_{backward}/i_{forward}]$: A, 0.424, 0.031, 0.96; **B**, -0.872, 0.033, 0.87; E_{pc} (**C**), -2.026. μ_{eff} : $3.81 \mu_{B}$.

Preparation of $[Ru_2(ap)_4 - (C_2 - C_6H_4 - 4 - N_2)]BF_4$ (3a). In a threeneck flask 100 mg (0.100 mmol) of compound 1a was dissolved in 6 mL of THF and placed in a dry ice-acetone bath. In a Schlenk tube 350 µL (3.22 mmol) of BF₃·Et₂O was diluted in 10 mL of Et₂O and cooled in a dry ice-acetone bath, then transferred to the three-neck flask via cannula. The mixture was stirred for 45 min, turning brown. The three-neck flask was then placed at room temperature, and 325 μ L (2.06 mmol) of t-BuNO₂ was added and stirred until a precipitate formed. The mixture was filtered through a double male frit and the solid placed on high vacuum to yield 107 mg of a dark green solid

(96.9%). Data for **3a**: ESI-MS, 878.7 [M - CC - Ph - N₂⁺BF₄⁻]⁺, 903.0 $[M - Ph - N_2^+ BF_4^-]^+$, 1007.9 $[M - BF_4^-]^+$; visible spectra, λ_{max} (nm, ε (M⁻¹ cm⁻¹)) 668(16000); IR (cm⁻¹) N=N 2228 (m), C=C 2131 (m). Cyclic voltammogram in MeCN, E_{pa}/V : 1.145, 0.940, E_{pc}/V : 0.140, -0.120, -1.158, 1.313, -1.81 ($\hat{E_{1/2}}(Fc^+/Fc)$): 0.430 V; open circuit potential 0.37 V).

Preparation of $[Ru_2(diMeOap)_4-(C_2-C_6H_4-4-N_2)]BF_4$ (3b). The synthesis followed the same procedure as that for 3a using 72.3 mg of 1b in 5 mL of THF. The diazonium salt was obtained in quantitative yield. Data for **3b**: visible spectra, λ_{max} (nm, ε (M⁻¹ cm⁻¹)) 681(11000); IR (cm⁻¹) N=N 2228 (m), C=C 2111 (m). Cyclic voltammogram in MeCN: E_{pa}/V 1.128, 0.976, E_{pc}/V 0.117; -0.083; -1.101; -1.289 ($E_{1/2}(Fc^+/Fc)$: 0.414 V; open circuit potential 0.30 V).

Computational Methods. The full geometry optimizations of structures 1b and 2a were based on obtained crystal structures, with 1b treated as 1a by removal of the methoxy substituents and using the density functional theory (DFT) method, and were based on the hybrid B3LYP density functional model,³⁵ con-sisting of the Slater local exchange,³⁶ the nonlocal exchange of Becke,³⁷ the local correlation functional of Vosco–Wilk– Nusair,³⁸ and the nonlocal correlation functional of Lee– Yang-Parr.³⁹ The basis set used for all atoms was the LanL2DZ by considering the involvement of metals. All calculations were carried out with the Gaussian 03 suite of programs.⁴⁰ No negative frequency observed in the vibrational frequency analysis indicates that these aniline-substituted diruthenium complexes are metastable equilibrium structures.

Structure Determination. Single crystals of compounds 1b and 2a were grown by slow cooling in a 1:3 mixture of THF-hexanes and vapor-vapor diffusion of pentane into a CH₂Cl₂ solution, respectively. X-ray diffraction data were collected on a Rigaku Rapid II image plate diffractometer using Cu K α radiation (λ = 1.54184 Å) at 150 K, and the structures were solved using the structure solution program PATTY in DIRDIF9941 and refined using SHELX-07.42 Crystal data for 1b: C₆₀H₅₈N₉O₈Ru₂. $3(C_4H_8O)$, fw = 1451.6, triclinic, $P\overline{1}$, a = 13.2318(13) Å, b =13.9353(13) Å, c = 21.626(2) Å, $\alpha = 105.296(6)^{\circ}$, $\beta = 90.477(8)^{\circ}$, $\gamma = 97.294(8)^{\circ}$, V = 3811.6(6) Å³, Z = 2, $D_{calc} = 1.265$ g cm⁻¹, R1 = 0.087, wR2 = 0.259. Crystal data for **2a**: $C_{52}H_{42}N_9Ru_2$. CH_2Cl_2 , fw = 1080.05, triclinic, $P\overline{1}$, a = 10.0003(5) Å, b =20.0034(8) Å, c = 25.6160(9) Å, $\alpha = 74.969(3)^{\circ}$, $\beta = 81.982(4)^{\circ}$, $\gamma = 79.121(4)^{\circ}$, V = 4837.8(4) Å³, Z = 4, $D_{calc} = 1.483$ g cm⁻¹, R1 = 0.059, wR2 = 0.179.

Acknowledgment. We thank the National Science Foundation (Grant No. CHE 0715404) for support.

Supporting Information Available: DFT calculation details for model 1, model 1', and model 2, voltammograms and vis spectra of compounds 3, and X-ray crystallographic details (CIF) of 1b and 2a. This material is available free of charge via the Internet at http://pubs.acs.org.

(36) Slater, J. C. The Self-consistent Field for Molecules and Solids, in Quantum Theory of Molecules and Solids; McGraw Hill: New York, 1974.

⁽³⁵⁾ Becke, A. D. J. Chem. Phys. 1993, 98, 5648. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.

⁽³⁷⁾ Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(38) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.

⁽³⁹⁾ Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

⁽⁴⁰⁾ Frisch, M. J.; et al. et al. *Gaussian 03, Revision D.02*; Gaussian, Inc.: Wallingford, CT, 2003.

⁽⁴¹⁾ Beurskens, P. T.; Beurskens, G.; deGelder, R.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M. The DIRDIF2008 Program System;

Crystallography Laboratory, University of Nijmegen: The Netherlands, 2008. (42) Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112.