Synthesis of *O*-[2-acetamido-2-deoxy-6-*O*-stearoyl- and -6-*O*-(2-tetradecylhexadecanoyl)- β -D-glucopyranosyl]-(1 \rightarrow 4)-*N*-acetylnormuramoyl-L- α -aminobutanoyl-D-isoglutamine, lipophilic disaccharide analogues of MDP

Miroslav Ledvina ^a, Jan Ježek ^a, David Šaman ^a, Tomáš Vaisar ^a and Věra Hříbalová ^b

^a Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6 (Czechoslovakia)

^b National Institute of Public Health, 100 42 Prague 10 (Czechoslovakia)

(Received November 2nd, 1992; accepted June 8th, 1993)

ABSTRACT

Silver triflate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl bromide (1) with benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (4) afforded the key compound, benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl-4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-glucopyranoside (5), which after deprotection was transformed into acid 10. Condensation of 10 with the benzyl ester of L- α -aminobutanoyl-D-isoglutamine and deisopropylidenation of the product 11 afforded the benzyl ester of N-{2-O-[benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy- β -D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy- α -D-glucopyranosid-3-yl]glycoloyl]-L- α -aminobutanoyl-D-isoglutamine (12). Partial O-acylation of 12 and hydrogenolysis of protecting groups gave the 6-O-stearoyl- and 6-O-(2-tetradecylhexadecanoyl)-disaccharide-dipeptides 17 and 18, respectively. Pyrogenicity and adjuvant activity in cell-mediated immunity are reported.

INTRODUCTION

Some time ago, we described^{1,2} the synthesis of O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)-(1 \rightarrow 4)-N-acetylnormuramoyl-L- α -aminobutanoyl-D-isoglutamine [β -D-GlcNAc-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln] *, an analogue of the basic repeating disaccharide-dipeptide subunit of peptidoglycan [GMDP, β -D-GlcNAc-(1 \rightarrow 4)-MurNAc-L-Ala-D-isoGln], modified both in the sugar and the peptide part

^{*} Normuramic acid (norMur) is the trivial name for 2-amino-3-O-carboxymethyl-2-deoxy-D-glucopyranose; Abu, α -aminobutanoic acid.

of the molecule. This compound displays higher immunoadjuvant activity than MDP (MurNAc-L-Ala-D-isoGln) and GMDP, and is without their unwanted side effects such as pyrogenicity and thrombocytolysis. In order to potentiate the biological activity in vivo and to improve the incorporation into liposomes, we prepared³ its lipophilic derivative [β -D-GlcNstearoyl-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln] bearing a stearoyl residue on the NH₂ group of the GlcNAc subunit.

This work describes the synthesis of lipophilic analogues of β -D-GlcNAc-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln with bulky groups of the type of fatty and mycolic acids on the primary hydroxyl group in the GlcNAc subunit. Besides the potentiation of biological effects in vivo connected with the introduction of a lipophilic residue into the molecule, such a derivative of the GlcNAc subunit contains 2-acetamido-2-deoxy-6-O-mycoloyl-D-glucopyranose, which has immunoadjuvant activity similar to trehalose dimycolate (TDM), but lower toxicity than TDM⁴. This can result in a strong synergistic effect, because it is known that muramoyl dipeptides in combination with TDM display strong antitumour activity⁵.

RESULTS AND DISCUSSION

Reductive opening of the acetal ring in the methyl ester of N-acetyl-1- α -O-benzyl-4,6-O-benzylidenenormuramic acid (3) with sodium cyanoborohydride⁶ afforded the glycosyl acceptor 4. Compound 3 was obtained by O-alkylation of the sodium hydride-generated sodium salt of benzyl 2-acetamido-4,6-O-benzylidene-2deoxy- α -D-glucopyranoside (2) by sodium chloroacetate in dioxane⁷ followed by esterification with diazomethane. Benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranoside (2) was obtained by a modified literature procedure⁸.

The key disaccharide 5 was prepared by the triflate approach without base¹, because the base acts as an inhibitor of the glycosidation of hydroxyl groups of low reactivity 9,10 . Reaction of glycosyl donor 1 and glycosyl acceptor 4 in the presence of silver triflate (molar ratios 2:1:2) in dichloromethane at -45° C afforded benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl-4-O-(3,4,6-tri-Oacetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-glucopyranoside (5) (yield 93%). Disaccharide 5 was O-deacetylated with sodium methoxide in methanol, the ester group was saponified with aqueous sodium hydroxide, and the phthaloyl group was detached by heating with butylamine in methanol. The deblocked product was selectively N-acetylated with acetic anhydride in methanol and esterified with diazomethane, yielding benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-B-D-glucopyranosyl)-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (6), which was characterized as a crystalline triacetate 7. Compound 6 reacted under trifluoromethanesulfonic acid catalysis with 2,2-dimethoxypropane in acetone to give the 4',6'-O-isopropylidene derivative 8. Reaction of this compound with benzyl chloromethyl ether in the presence of N,N-diisopropylethylamine in dichloromethane afforded benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-4,6-O-isopropylidene-B-D-glucopyranosyl)-6-O-benzyl-2-de-

oxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (9). The methyl ester 9 was saponified by sodium hydroxide and the resulting acid 10 was condensed with the trifluoroacetate of L- α -aminobutanoyl-D-isoglutamine benzyl ester¹ by means of 1,3-dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole, yielding the protected glycopeptide 11. This was transformed into the benzyl ester of N-{2-O-[benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy- β -D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy- α -D-glucopyranosid-3-yl]-glycoloyl}-L- α -aminobutanoyl-D-isoglutamine (12) by splitting off the isopropylidine group in 50% acetic acid. Partial O-acylation¹¹ of compound 12 with stearic acid in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (WSC) and 4-dimethyl-

17 R = stearoyl18 R = 2-tetradecylhexadecanoyl

BOM = benzyloxymethyl, isoGln(OBzl) = isoglutamine benzyl ester Phth = phthaloyl

aminopyridine (DMAP) in N,N-dimethylformamide at 45°C afforded the 6'-O-acvland 4',6'-di-O-acyl derivatives 13 and 14, respectively, in the molar ratio 3:1; DCC as a condensation reagent was not efficient under these conditions. By using the benzotriazol-1-vloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) reagent¹², the condensation proceeded with low conversion, and after addition of DMAP with low selectivity. Acylation of 12 with stearoyl chloride in the presence of triethylamine did not proceed and in the presence of pyridine or DMAP displayed low selectivity. Attempts to introduce fatty acids branched on C-2 into the molecule of 12 by reaction with 2-tetradecylhexadecanoic acid¹³ in the presence of WSC and DMAP or via the acyl chloride with DMAP catalysis were not successful. The desired 6'-O-(2-tetradecylhexadecanoyl) derivative 15 was obtained in a yield of 51% by silver triflate-promoted acylation of 12 with 2-tetradecylhexadecanoyl chloride in dichloromethane at -45° C. Raising the reaction temperature to 0°C leads, besides the monoacyl derivative 15, to the 4',6'-di-O-acyl derivative 16. Hydrogenolysis of the benzyl groups in 13 and 15 led to the target O-[2-acetamido-2-deoxy-6-O-stearoyl- β -D-glucopyranosyl]-(1 \rightarrow 4)-N-acetylnormuramoyl-L- α -aminobutanoyl-D-isoglutamine (17) and O-[2-acetamido-2-deoxy-6-O-(2-tetradecylhexadecanoyl)- β -D-glucopyranosyl]-(1 \rightarrow 4)-N-acetylnormuramoyl-L- α -aminobutanoyl-D-isoglutamine (18), respectively.

Pyrogenicity was tested on Chinchilla rabbits in doses of 40, 200, and 1000 nM per rabbit. 6-O-Stearoyl derivative 17 was weakly pyrogenic ($\Delta T > 0.5^{\circ}$ C) only at the highest dose tested, 6-O-(2-tetradecylhexadecanoyl) derivative 18 was completely apyrogenic. In the tested sequence of MDP derivatives, the apyrogenic character was detected already with β -D-GlcNAc-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln^{1,2} and its stearoyl derivative β -D-GlcNstearoyl-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln³, while MDP, norMurNAc-L-Abu-D-isoGln, and GMDP were highly and comparably pyrogenic even at 200 nM per rabbit. Certain differences in pyrogenicity of the last three substances were visible only at 40 nM per rabbit, with MDP being the most and norMurNAc-L-Abu-D-isoGln the least pyrogenic.

Adjuvant activity was tested by induction of experimental allergic encephalomyelitis, which is, besides the delayed type skin reaction, the most frequently used test of adjuvant activity of muramoyl peptides in cell-mediated immunity. In this test, β -D-GlcNstearoyl-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln and norMurNAc-L-Abu-D-isoGln displayed the highest activity. A weaker effect of MDP, GMDP, and β -D-GlcNAc-(1 \rightarrow 4)-norMurNAc-L-Abu-D-isoGln was mutually comparable. Compound 18 with the bulkiest lipophilic part of the molecule displayed the lowest activity. Details of the above-mentioned data and other biological activities will be published elsewhere.

The structure of the compounds synthesized was shown by NMR spectrometry. Characteristic ¹H and/or ¹³C NMR data for compounds 5–9 and 11–18 are presented in Tables I–V. In the case of compounds 7 and 11, for a better understanding of spectra and uninterchangeable assignment of signals, 2D homonuclear ¹H–¹H and heteronuclear ¹H–¹³C COSY spectra were also measured.

TABLE I

¹H NMR parameters of *N*-acetylnormuramoyl and glucosaminide moieties in compounds 5–9, 11, and 12 (in $CDCl_3$, 125.8 MHz, $CDCl_3 = 77.00$ ppm)

Parameter	5	6 ^{<i>a</i>}	7	8	9	11	12 ^a
δ (H-1)	5.32 d	4.80 d	5.39 d	5.32 d	5.36 d	4.88 d	4.83 d
δ (H-2)	3.80 m	3.75 m	3.80 m	3.82 m	3.83 m	4.22 m	3.83 m
δ (H-3)	3.67 dd	3.58 dd	3.69 dd	3.70 dd	3.67 dd	3.62 dd	3.59-3.68 m
δ (H-4)	4.09 dd	3.70 dd	3.85 dd	3.81 dd	3.86 dd	3.91 dd	3.93 t
δ (H-5)	3.43 m	3.57-3.68 m	3.58 m	3.64 m	3.54 m	3.63 m	3.59-3.68 m
δ (H-6a)	3.28 dd		3.34 dd	3.48 dd	3.31 dd	3.46 dd	
δ (H-6b)	3.35 dd	3.67 dd	3.51 dd	3.61 dd	3.51 dd	3.63 dd	
δ (H-1′)	5.39 d	4.55 d	4.25 d	4.38 d	4.19 d	4.47 d	4.28 d
δ (H-2′)	4.25 dd	3.70 q	3.97 m	3.63 m	3.88 bq	3.74 bq	3.59-3.68 m
δ (H-3')	5.81 dd		3.41 dd	3.41 dd	3.82 dd	3.66 dd	
δ(H-4')	4.85 dd	3.57-3.68 m	3.57 dd	3.53 dd	3.60 dd	3.53 dd	3.61 dd
δ (H-5′)	3.57 m		3.56 m	3.12 m	3.13 m	3.06 m	3.09 m
δ (H-6'a)	3.96 dd		4.00 dd	3.68 t	3.64 t	3.66 t	3.59-3.68 m
δ (H-6'b)	4.40 dd	4.43 dd	4.41 dd	3.94 dd	3.96 dd	3.85 dd	
δ (NH Ac)	1.85 s	1.82 s	1.99 s	1.79 s	1.99 s	1.90 s	1.83 s
δ (NHAc)	5.39 d	7.86 d	7.81 d	7.70 d	7.70 d	6.30 d	8.16 d
J(1, 2)	3.4	3.4	3.3	3.5	3.5	3.7	3.5
J(2, 3)	11.0	11.0	11.0	11.0	11.0	10.6	11.0
J(3, 4)	8.8	8.6	8.8	8.8	8.8	9.0	Ь
J(4, 5)	10.0	9.3	9.9	9.7	9.8	9.7	9.3
J(5, 6a)	3.1	ь	2.0	4.3	2.2	2.0	Ь
J(5, 6b)	1.3	1.7	2.4	2.6	2.3	2.3	Ь
J(1', 2')	8.4	9.5	9.7	8.4	8.6	8.5	8.6
J(2', 3')	10.8	9.8	10.6	9.8	10.3	9.6	ь
J(3', 4')	9.0	ь	9.3	9.0	9.0	9.0	9.0
J(4', 5')	10.2	ь	10.0	10.0	9.9	9.9	9.8
J(5', 6'a)	2.4	ь	2.5	10.5	10.4	10.6	ь
J(5′, 6′b)	4.2	5.0	4.5	5.3	5.4	5.3	b

^a Spectra measured in $(CD_3)_2$ SO [$(CD_3)_2$ SO = 2.50 ppm]. ^b Value not determined.

TABLE II													
¹³ C NMR chei	nical shifts c	of N-acetyln	ormuramoy	d and gluco	saminide m	oieties in a	ompounds 5-	9 and 11-1	8 (CDCl ₃ , 1	125.8 MHz,	$CDCl_3 = 77$	(mdd 00.	
Compound	C-1	C-2	C-3	C-4	C.S	C.6	C-1,	C-2'	C.3,	C-4′	C-5'	C-6'	i –
N.	96.40	51.99	77.14	76.59	70.09	67.68	67.01	55.14	68.68	70.46	71.34	61.38	1
e a	95.97	51.59	78.25	76.79	70.49	68.67	101.18	56.38	70.57	74.01	76.65	61.20	
7	96.66	51.89	78.66	76.90	69.86	66.85	100.84	54.19	68.26	71.23	72.85	61.55	
80	96.33	51.96	78.35	77.18	70.32	68.64	100.20	56.42	71.33	75.42	75.93	62.07	
9	96.58	51.98	78.09	77.15	70.15	67.30	100.63	54.24	70.99	85.24	75.00	63.12	
11	96.47	52.31	79.53	76.30	70.18	67.66	100.47	54.81	70.51	82.12	75.57	61.50	
12 "	95.97	52.69	78.28	76.60	70.45	68.62	100.25	53.55	70.64	80.06	75.59	60.90	
13	96.64	52.64	80.33	73.72	70.23	67.73	17.66	55.08	70.36	82.73	75.99	62.85	
14	96.78	52.75	78.28	73.41	70.38	67.90	99.30	55.19	70.57	79.72	75.64	62.15	
15 ª	95.82	51.71	77.55	73.65	70.46	68.20	99.81	55.18	70.92	79.67	75.71	63.47	
16 a	95.73	51.64	76.79	76.20	70.35	68.02	98.77	56.23	70.63	77.45	75.74	62.38	
17 a	90.28	51.96	76.73	73.91	70.61	63.37	101.32	56.04	70.97	78.04	73.53	59.75	
18 ª	90.25	52.17	77.36	74.16	71.21	63.87	101.47	56.33	71.11	77.82	74.01	60.00	
^a Spectra mea	sured in (CL) ₃) ₂ SO [(CD	$(3)_2 SO = 39$.70 ppm].									

a
dd
7.00
= 7
ີບ
9
Hz,
× X
125.1
I ₃ ,]
DC
S
Ξ
l p
9 an
5
spu
nod
EOS
'n.
ties
noie
de n
inic
san
lucc
g þr
yl aı
loun
nura
Elot
stylr
-ace
τN
fts c
shij
ical
hem
Rcl
MN
5

¹³ C NMR chemical shi	ifts of the n	onsugar m	toiety in co	; spunoduu	5-9 and 1	1-18 (CD(Cl ₃ , 125.8	MHz, CD	Cl ₃ = 77.0	(mqq 0				
Carbon	5 a	6 ptc	7 d	8 c	<i>J</i> 6	11	12 b	13	14	15 ^b	16 ^b	17 b	18 ^b	
NHCOCH ₃	170.91	169.56	169.58	172.23	170.98	171.04	169.73	170.33	170.34	169.47	169.77	169.63	169.69	
5		169.42	169.33	171.26	169.83	170.81	169.30	170.42	170.43	169.43	169.33	169.44	169.64	
	22.99	23.30	23.00	22.76	23.28	22.98	23.13	23.34	23.29	23.10	22.89	23.19	23.41	
		22.77	23.00	22.76	23.00	22.75	22.72	23.34	23.29	22.69	22.48	22.83	23.06	
CH ₂ COOR	173.80	171.57	173.94	173.09	173.40	172.54	171.33	171.17	171.32	171.24	171.33	170.55	171.52	
	72.71	72.25	73.93	74.00	73.77	73.61	72.14	73.48	73.35	72.16	72.06	70.02	70.18	
OCH ₂ OB ₂ I					95.91	92.66	95.22	95.90	95.72	95.28	95.34			
L-Abu-D-isoGln(OBzl)						54.97	53.55	55.93	55.15	53.58	53.55	53.54	54.28	
						24.80	25.78	24.94	24.88	25.89	25.81	24.58	25.92	
						9.96	10.03	10.32	10.34	9.98	9.76	9.87	10.24	
						171.54	170.32	170.42	170,71	170.93	171.17	171.32	171.62	
						52.50	52.69	52.81	52.73	53.31	53.55	53.48	53.96	
						173.10	172.28	172.14	172.09	172.26	172.04	173.34	173.51	
						26.21	27.05	26.25	26.35	27.14	27.07	27.11	27.36	
						30.52	30.27	30.72	30.70	30.24	30.11	30.38	30.60	
						173.98	173.12	173.28	173.35	173.06	173.81	174.03	174.22	
						69.73	68.35	ø	66.65	68.69	69.18			
" COOCH ₃ 54.07. ^b S	pectra mea	sured in ((CD ₃) ₂ SO [(CD ₃) ₂ SO	= 39.70 p	pm]. ^c CO	<u>осн</u> 3 52	.81. ^d CO	OCH ₃ 53.	69. ° COC	DCH ₃ 53.	45. ⁷ COO	CH ₃ 53.86.	

ĩ Ş č TABLE III ¹³C NMR

Carbon	13 ^a	14 ^{<i>a</i>,<i>b</i>}	15	16 ^b	17	18
OStear	174.47	173.75		·····	174.03	
	34.22	33.83			33.57	
	31.90	31.90			31.50	
	29.70	29.70			29.27	
	29.54	29.56			29.25	
	29.34	29.35			29.17	
	29.22	29.21			28.90	
	14.09	14.09			14.16	
OTDHC ^c			175.50	174.58		175.87
			44.70	44.34		44.89
			31.48	31.40		31.71
			29.23	29.18		29.46
			29.16	29.18		29.12
			26.70	26.60		26.98
			22.27	22.13		22.50
			14.08	13.63		14.34

TABLE IV

¹³C NMR chemical shifts of the nonsugar moiety in compounds 13–18 [in $(CD_3)_2SO$, 125.8 MHz, $(CD_3)_2SO = 39.70$ ppm]

^a Measured in $CDCl_3$ ($CDCl_3 = 77.00$ ppm). ^b Double intensity of all signals of acyl residue. ^c OTDHC = 2-tetradecylhexadecanoyl.

Fast atom bombardment mass spectra showed a sodium-cationized molecular ion for all compounds (even when the spectrum was recorded in pure commercial 3-nitrobenzyl alcohol) and only little fragmentation. Formation of this type of ion is well-known for saccharides¹⁵, where the sodium cation is probably chelated on one of the C-1 carbon-bonded oxygens and ether oxygens. Further addition of sodium cation in the form of sodium iodide causes an increase in the intensity of cationized molecular ion and the appearance of several fragment ions of medium intensity due to cleavages of glycosidic bonds between sugar units¹⁶.

EXPERIMENTAL

Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured with a Perkin-Elmer 141 polarimeter at 25°C. NMR spectra were recorded with a Varian UNITY-500 spectrometer in the FT mode at 499.8 MHz (¹H spectra) and at 125.6 MHz (¹³C spectra) in CDCl₃, using Me₄Si as internal standard for the ¹H NMR spectrum and CDCl₃ (δ 77.0) or (CD₃)₂SO (δ 39.7) signals (for compounds 15 and 16) as standards for the ¹³C NMR spectrum. Chemical shifts are given in ppm (δ scale) and coupling constants (*J*) in Hz. FAB mass spectra were measured on a BEqQ geometry mass spectrometer ZAB-EQ (VG Analytical, Manchester, UK), using an M-Scan FAB gun (Xe, energy 8 keV) (Ascott, UK) at an accelerating voltage of 8 kV. Data acquisition of the spectra was controlled by a VG data system 11-250J [computer PDP 11/73(DEC, USA)] and VG-MS software. The spectra were acquired using the MultiChannel Analysis

Carbon	5 <i>a,b</i>	e 9	1 c	œ	6	11	12 ^a	13	14	15 ^a	16 a
OCH ₂ Ph	69.98	69.02	70.31	70.14	70.32	70.70	70.39	70.18	69.88	69.88	69.49
	68.77	68.67	68.94	68.78	68.98	69.73	68.88	69.84	69.88	68.94	68.74
OCH ₂ OCH ₂ Ph					q	66.52	66.57	66.55	65.32	65.65	65.45
C ₆ H ₅	138.32	138.85	137.63	137.29	137.99	137.81	138.39	138.09	137.45	137.77	137.79
	137.56	137.73	137.63	137.19	137.56	137.06	137.76	136.78	136.87	136.33	136.21
	128.18	128.46	129.13	128.77	128.96	128.45	128.60	128.64	128.60	128.58	128.30
	127.56	127.69	128.28	127.81	127.93	127.79	127.70	128.10	128.46	128.02	128.18
	127.46	127.52	127.65	127.80	127.72	127.65	127.34	127.89	127.44	127.16	127.18
^a Spectra measure 20.69, 20.69, 20.55	ed in (CD ₃) ₂ ^d Signal not	SO [(CD ₃) ₂ S t observed.	(O = 39.70 p)	pm]. ^b OCO	CH ₃ : 170.54	, 169.98, 16	9.53, 20.63,	20.58, 20.37.	¢ 170.87,	170.66, 170.66,	170.60, 20.71,

¹³C NMR chemical shifts of the nonsugar moiety in compounds 5-9 and 11-18 (CDCl₃, 125.8 MHz, CDCl₃ = 77.00 ppm)

TABLE V

M. Ledvina et al. / Carbohydr. Res. 251 (1994) 269-284

utility of VG software, cumulating ca. 5 spectra. Samples were dissolved in CHCl₃ prior to addition of 1 μ L of this saturated solution to the matrix (3-nitrobenzyl alcohol) on the target. Extensive sodium cationization was achieved by addition of sodium iodide to the sample on the target. CD spectra were recorded with a dichrographe Jobin–Yvon Mark V in MeOH, using software Dichrosoft written by Dr. P. Maloň. The measurements were done in cells of 0.1- and 0.02-cm path length in the range 200–260 nm. Thin-layer chromatography was performed on Silufol UV₂₅₄ sheets, and column chromatography on silica gel Silpearl (both Kavalier, Votice, Czechoslovakia). High-performance liquid chromatography was carried out on columns ($250 \times 4 \text{ mm}$ or $250 \times 17 \text{ mm}$) packed with Separon SGX C18 (5 and 10 μ m, respectively; Laboratorní přístroje, Prague, Czechoslovakia). Solutions were evaporated on a rotary vacuum evaporator. Amino acid analyses were obtained with a Durrum amino acid analyser (samples were hydrolyzed with 4 M HCl for 8 h at 110°C. Analytical samples were dried at 6.5 Pa and 25°C for 8 h.

Benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy- α -D-glucopyranoside (2).—To a stirred suspension of benzyl 2-acetamido-2-deoxy- α -D-glucopyranoside⁸ (49.6 g, 160 mmol) in a mixture of DMF (160 mL) and dioxane (160 mL) were added ethyl orthoformate (80 mL, 480 mmol), benzaldehyde (64 mL, 630 mmol), and trifluo-romethanesulfonic acid (2 mL, 22 mmol), and the mixture was stirred for 8 h at room temperature. After standing overnight, the mixture first dissolved and then the product gradually precipitated. After neutralization with Et₃N (4 mL, 28.6 mmol) the mixture was stirred with ether (400 mL), and the product was filtered off and washed with ether, to yield 2 (50 g, 78%); mp 261°C (pyridine); $[\alpha]_D + 109^\circ$ (c 0.9, pyridine); lit.¹⁴: mp 262°C; $[\alpha]_D + 114^\circ$ (c 1.1, pyridine).

Benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(methoxycarbonyl)methyl- α -Dglucopyranoside (3).—Compound 2 (52 g, 130 mmol) and NaH (18.0 g, 750 mmol) were heated in dioxane (900 mL) for 2 h at 95°C. After cooling to room temperature, chloroacetic acid (17.3 g, 184 mmol) was added and the mixture was stirred for 6 h at 65°C. To the mixture (cooled to room temperature) was added solid CO_2 , excess of NaH was decomposed by water, and solvents were evaporated. The residue was dissolved in water (1 L), and the stirred and ice-cooled solution was neutralized with KH_2PO_4 , which had been adjusted to pH 3 by H_2SO_4 (120 g of KH_2PO_4) and 80 g of H_2SO_4 in 400 mL of water). The precipitated product was extracted with EtOAc $(2 \times 1 L)$, and the extracts were dried (Na₂SO₄) and concentrated to 400 mL. To this stirred ice-cooled solution was added diazomethane in ether until a yellow coloration persisted. After 30 min at room temperature, the excess of diazomethane was decomposed with AcOH and the mixture was concentrated. Crystallization from MeOH afforded 3 (41 g, 67%); mp 205°C; $[\alpha]_D$ + 141° (c 0.2, CHCl₃). Anal. Calcd for C₂₅H₂₉NO₈ (471.5): C, 63.68; H, 6.20; N, 2.97. Found: C, 63.78; H, 6.15; N, 3.07.

Benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (4).—To a stirred suspension of 3 (28.5 g, 60 mmol) and NaBH₃CN (15.08 g, 240 mmol) in dry THF (1 L) at room temperature was slowly added a saturated solution of HCl in diethyl ether to give an acidic pH (pH paper). After stirring for 1 h, another portion of NaBH₃CN (11.31 g, 180 mmol) was added, followed by HCl in diethyl ether to keep the pH acidic, and the mixture was stirred for an additional 8 h. Then aq 20% NaOAc was added to give a neutral pH (pH paper) and the mixture was concentrated in vacuo. Chloroform was added (750 mL), and the mixture was extracted with water (2 × 200 mL), dried (Na₂SO₄), and evaporated. Chromatography of the residue on a silica gel column (750 g) in 1:3 toluene–EtOAc afforded 24.8 g (87%) of 4. Crystallization from toluene afforded 4 (19.5 g, 69%); mp 124°C [α]_D + 87° (c 0.2, CHCl₃). Anal. Calcd for C₂₅H₃₁NO₈ (473.2): C, 63.39; H, 6.60; N, 2.95. Found: C, 63.41; H, 6.52; N, 2.94.

Benzyl 2-acetamido-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl-4-O-(3,4,6tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl)- α -D-glucopyranoside (5).—A mixture of 4 (18.94 g, 40 mmol) and silver trifluoromethanesulfonate (20.56 g, 80 mmol) was dried, with intensive stirring in an apparatus equipped with a septum, for 4 h at room temperature and 1.32 Pa. The apparatus was flushed with Ar $(2 \times)$, and dry CH₂Cl₂ (140 mL) was added through the septum. After dissolution, the stirred mixture was cooled to -45° C. A solution of bromide 1¹ (39.88 g, 80 mmol) in dry CH_2Cl_2 (140 mL) was gradually added through the septum during 1 h and the mixture was stirred for another 1 h at -45° C and 20 min at -20° C. At -20° C, pyridine (20 mL) was added and after raising to room temperature the precipitated AgBr was filtered off and washed with CHCl₃ (500 mL). The filtrate was diluted by CHCl₃ (2 L), and the solution was extracted with satd aq NaHCO₃ $(2 \times 300 \text{ mL})$ and water (300 mL), dried (Na₂SO₄), and evaporated. Chromatography on a silica gel column (2000 g) in 2:3 toluene-EtOAc afforded 33.0 g (93%) of 5 as a solid foam; $[\alpha]_{D} + 47^{\circ}$ (c 0.4, CHCl₃). Anal. Calcd for C₄₅H₅₀N₂O₁₇ (890.4): C, 60.64; H, 5.66; N, 3.14. Found: C, 60.32; H, 5.61; N, 3.33.

Benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-B-D-glucopyranosyl)-6-O-benzyl-2deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (6).—A solution of 5 (22.5 g, 25.3 mmol) in 0.01 M NaOMe in MeOH (500 mL) was kept for 12 h at 5°C, then neutralized with Dowex 50 (H^+) , and the resin was filtered off and washed with MeOH. The filtrate was evaporated and the residue heated with stirring in 2:1 MeOH-1 M NaOH (600 mL) for 3 h at 60°C. After cooling, the mixture was neutralized with Dowex 50 (H^+) , and the suspension was placed on a column of the same ion-exchange resin (500 mL) which was then eluted with aq 60% MeOH (2.5 L). The eluate was evaporated, and the residue was dried for 3 h at room temperature and 1.32 Pa, dissolved in a mixture of 4:1 MeOH-butylamine (200 mL), and heated in a pressure bottle for 15 h at 85°C. After cooling, the mixture was evaporated and the residue was extracted with ether (3×200 mL). The insoluble residue was dissolved in 90% MeOH (200 mL), and the solution was adjusted to pH 4 with formic acid and then poured onto a column of Dowex 50 (NH_4^+) resin (800 mL). The column was washed with 90% MeOH (3 L), the product was desorbed with a mixture of 1:9 aq 25% ammonia-MeOH, and the eluate was evaporated. The residue was dissolved in MeOH (120 mL), and Ac₂O (12 mL) was added with stirring. After 30 min at room temperature, another portion of Ac₂O (12 mL) was added and after 2 h the mixture was evaporated. The residue was codistilled with toluene (3 × 100 mL) and dried for 3 h at room temperature and 1.32 Pa. The residue was dissolved in MeOH (120 mL) and diazomethane was added with stirring at 0°C until a yellow coloration persisted. After 30 min at 0°C, the excess of diazomethane was decomposed with AcOH and the mixture was evaporated. The residue was chromatographed on a column of silica gel (500 g) in 20:2:2:1 EtOAc-acetone-EtOH-water, to yield solid 6 (10.5 g, 61%); $[\alpha]_D$ +72° (c 0.4, MeOH). Anal. Calcd for C₃₃H₄₄N₂O₁₃ (676.4): C, 58.54; H, 6.55; N, 4.13. Found: C, 58.26; H, 6.41; N, 4.36.

Benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl-α-D-glucopyranoside (7).— A solution of 6 (677 mg, 1.0 mmol) in 2:1 pyridine–Ac₂O (6 mL) was kept for 12 h at room temperature. Excess of Ac₂O was decomposed with MeOH and the mixture was evaporated. The residue was dissolved in CHCl₃ (50 mL), and the solution was extracted with water (2 × 10 mL), dried (Na₂SO₄), and evaporated. Crystallization form CHCl₃–ether afforded 7 (520 mg, 65%); mp 245–248°C; [α]_D + 68° (c 0.4, CHCl₃). Anal. Calcd for C₃₉H₅₀N₂O₁₆ (802.4): C, 58.32; H, 6.27; N, 3.48. Found: C, 58.08; H, 6.29; N, 3.69.

Benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-4,6-O-isopropylidene- β -D-glucopyranosyl)-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (8). —To a stirred suspension of 6 (5.3 g, 7.8 mmol) in a mixture of 2,2-dimethoxypropane (40 mL) and acetone (160 mL) was added trifluoromethanesulfonic acid (250 μ L, 2.8 mmol). After stirring at room temperature for 6 h, the solution was neutralized with Et₃N (1 mL) and evaporated. The residue was dissolved in CHCl₃ (300 mL), and the solution was extracted with water (2 × 100 mL), dried (Na₂SO₄), and evaporated. Chromatography on a silica gel column (250 g) in 40:2:2:1 EtOAc-acetone-EtOH-water afforded 4.1 g (73%) of solid 8; $[\alpha]_D$ +65° (c 0.4, CHCl₃). Anal. Calcd for C₃₆H₄₈N₂O₁₃ (716.4): C, 60.30; H, 6.75; N, 3.90. Found: C, 59.94; H, 6.62; N, 4.02.

Benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-4,6-O-isopropylidene- β -D-glucopyranosyl)-6-O-benzyl-2-deoxy-3-O-(methoxycarbonyl)methyl- α -D-glucopyranoside (9).—Compound 8 (3.4 g, 4.74 mmol) was dissolved in CH₂Cl₂ (20 mL), and N,N-diisopropylethylamine (3.8 mL, 21.8 mmol), benzyl chloromethyl ether (2.0 mL, 14.4 mmol), and 4A molecular sieves (Fluka, 4.0 g) were added. The mixture was stirred at room temperature for 48 h. Methanol (2.0 mL) was added, the mixture was stirred for 30 min, the molecular sieves were then filtered off, the filtrate was evaporated, and the residue was codistilled with toluene (2 × 20 mL). The residue was dissolved in CHCl₃ (150 mL), and the solution was extracted with water (2 × 30 mL), dried (Na₂SO₄), and evaporated. Chromatography on silica gel (200 g) in 3:1 EtOAc-toluene afforded 3.4 g (86%) of solid 9; [α]_D +87° (c 0.4, CHCl₃). Anal. Calcd for C₄₄H₅₆N₂O₁₄ (836.4): C, 63.12; H, 6.74; N, 3.34. Found: C, 63.49; H, 6.86; N, 3.19. Benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-4,6-O-isopropylidene- β -D-glucopyranosyl-6-O-benzyl-2-deoxy-3-O-carboxymethyl- α -D-glucopyranoside (10).—Compound 9 (3.0 g, 3.58 mmol) was dissolved in dioxane (60 mL), 0.5 M NaOH (20 mL) was added, and the mixture was stirred for 12 h at room temperature and then neutralized with Dowex 50 (pyridine form) resin. The resin was filtered off and washed with dioxane. The filtrate was evaporated and the residue was codistilled with toluene (3 × 50 mL), to yield 2.93 g (99%) of solid 10, which, without further purification, was condensed with the trifluoroacetate of the benzyl ester of L- α -aminobutanoyl-D-isoglutamine.

N-{2-O-[Benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-4,6-O-isopropylidene- β -D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy- α -D-glucopyranosid-3yl]-glycoloyl}-L- α -aminobutanoyl-D-isoglutamine benzyl ester (11).—A solution of (tert-butoxycarbonyl)-L- α -aminobutanoyl-D-isoglutamine benzyl ester¹ (1.68 g, 4.0 mmol) in a mixture of 17:3 CH₂Cl₂-CF₃CO₂H (50 mL) was kept at room temperature for 50 min. After evaporation, the syrupy residue was extracted with ether (2 × 100 mL), and the insoluble portion was dried for 2 h at room temperature and 1.32 Pa. The syrup obtained was dissolved in dry dioxane (65 mL) and the resulting solution of the trifluoroacetate of L- α -aminobutanoyl-D-isoglutamine benzyl ester was used immediately for coupling with the acid 10.

To a stirred solution of **10** (2.96 g, 3.6 mmol) and 1-hydroxybenzotriazole monohydrate (500 mg, 3.7 mmol) in CH₂Cl₂ (25 mL) at 0° was added 1 M DCC in CH₂Cl₂ (3.6 mL). After 1 h, a solution of the trifluoroacetate of L- α -aminobutanoyl-D-isoglutamine benzyl ester and Et₃N (0.7 mL) were added. The mixture was stirred for 2 h at 0°C, kept for 12 h at room temperature, and filtered, and the filtrate was evaporated. A solution of the residue in CHCl₃ (400 mL) was washed with satd aq NaHCO₃ (2 × 100 mL) and water (100 mL), dried (Na₂SO₄), and evaporated. The residue was stirred with CHCl₃ (50 mL), *N*,*N'*-dicyclohexylurea was filtered off and washed with CHCl₃, and the filtrate was evaporated. Chromatography on a silica gel column (350 g) in 300:10:1 CHCl₃-MeOH-Et₃N afforded 3.8 g (94%) of **11** as a solid foam; [α]_D + 48° (*c* 0.4, CHCl₃). Anal. Calcd for C₅₉H₇₅N₅O₁₇ (1125.6): C, 62.89; H, 6.71; N, 6.21. Found: C, 62.82; H, 6.75; N, 6.26.

N-{2-O-[Benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-β-D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy-α-D-glucopyranosid-3-yl]-glycoloyl}-L-αaminobutanoyl-D-isoglutamine benzyl ester (12).—Compound 11 (3.3 g, 2.93 mmol) was heated for 1.5 h at 40°C with stirring in aq 50% AcOH (140 mL). During this time, 11 dissolved and then the product precipitated. The mixture was evaporated and codistilled with toluene (3 × 50 mL); yield: 3.06 g (96%) of solid 12, chromatographically homogeneous in TLC (silica gel) in 10:1 CHCl₃-MeOH; $[\alpha]_D + 63^\circ$ (*c* 0.4, pyridine). FABMS: m/z 1108.7 (M + Na). Anal. Calcd for C₅₆H₇₁N₅O₁₇ (1086.2): C, 61.92; H, 6.59; N, 6.45. Found: C, 61.57; H, 6.43; N, 6.40.

N- $\{2-O-[Benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-6-O-stearoyl-\beta-D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy-\alpha-D-glucopyranosid-3-yl]-gly-$

coloyl}-L- α -aminobutanoyl-D-isoglutamine benzyl ester (13) and N-{2-O-[benzyl 2-acetamido-4-O-(2-acetamido-3-O-benzyloxymethyl-2-deoxy-4,6-di-O-stearoyl- β -D-glucopyranosyl)-6-O-benzyl-2,3-dideoxy- α -D-glucopyranosid-3-yl]-glycoloyl}-L- α -aminobutanoyl-D-isoglutamine benzyl ester (14).—A mixture of 12 (260 mg, 0.24 mmol), stearic acid (85 mg, 0.30 mmol), WSC (58 mg, 0.3 mmol), and 4-dimethyl-aminopyridine (29 mg, 0.24 mmol) in DMF (10 mL) was heated with stirring for 3 h at 45°C. Another portion of stearic acid (28 mg, 0.1 mmol), WSC (19 mg, 0.1 mmol), and 4-dimethylaminopyridine (12 mg, 0.1 mmol) were added and the mixture was stirred at 45°C for another 2 h. After cooling to room temperature, MeOH (2 mL) was added and 1 h later the mixture was evaporated. The residue was chromatographed on a silica gel column (40 g) in 20:1 CHCl₃-MeOH.

Lyophilization from AcOH of homogeneous fractions with higher R_f value afforded 90 mg (23%) of 14; $[\alpha]_D$ + 29° (c 0.5, CHCl₃). FABMS: m/z 1641.7 (M + Na). Anal. Calcd for $C_{92}H_{139}N_5O_{19}$ (1618.1): C, 68.22; H, 8.65; N, 4.32. Found: C, 68.30; H, 8.59; N, 4.16.

Lyophilization from AcOH of homogeneous fractions with lower R_f value afforded 13 (218 mg, 67%); $[\alpha]_D$ +25° (c 0.4, CHCl₃). FABMS: m/z 1374.9 (M + Na). Anal. Calcd for $C_{74}H_{105}N_5O_{18}$ (1351.8): C, 65.68; H, 7.82; N, 5.17. Found: C, 65.40; H, 7.64; N, 4.94.

N-[2-O-{Benzyl 2-acetamido-4-O-[2-acetamido-3-O-benzyloxymethyl-2-deoxy-6- $O-(2-tetradecylhexadecanoyl)-\beta-D-glucopyranosyl]-6-O-benzyl-2,3-dideoxy-\alpha-D-gluco$ pyranosid-3-yl-glycoloyl]-L- α -aminobutanoyl-D-isoglutamine benzyl ester (15). Compound 12 (435 mg, 0.4 mmol) and silver trifluoromethanesulfonate (154 mg, 0.6 mmol) were dried for 8 h at room temperature and 1.32 Pa in an apparatus provided with a septum. The apparatus was purged twice with Ar, and CH_2Cl_2 (8) mL) was added through the septum. The mixture was cooled to -45° C and, with stirring, a solution of 2-tetradecylhexadecanoyl chloride (283 mg, 0.6 mmol) in dry CH_2Cl_2 (8 mL) was added through the septum during 1 h. The mixture was stirred for another 30 min at -45° C and 30 min at -20° C, pyridine (1.5 mL) was added, and the mixture was withdrawn from the cooling bath; when the mixture reached ambient temperature, it was diluted with $CHCl_3$ (60 mL), and the suspension was filtered. The filtrate was washed with satd aq NaHCO₃ (2×20 mL) and water (20 mL), dried (Na_2SO_4) , and evaporated. The residue was chromatographed on silica gel (25 g) with 20:1 CHCl₃-MeOH and homogeneous fractions were lyophilized from benzene, to yield 15 (309 mg, 51%); $[\alpha]_{\rm D}$ + 25° (c 0.4, CHCl₃). FABMS: m/z1543.2 (M + Na). Anal. Calcd for $C_{86}H_{129}N_5O_{18}$ (1520.3): C, 67.89; H, 8.55; N, 4.60. Found: C, 67.92; H, 8.63; N, 4.41.

Washing the column with 10:1 CHCl₃-MeOH and evaporation of homogeneous fractions yielded 130 mg (30%) of starting compound 12.

It is important to maintain strictly the reaction temperature given above, because when the temperature was allowed to rise to 0°C, the chromatography afforded, besides 15, N-[2-O-{benzyl 2-acetamido-4-O-[2-acetamido-3-O-benzyl-oxymethyl-2-deoxy-4,6-di-O-(2-tetradecylhexadecanoyl)- β -D-glucopyranosyl]-6-O-

benzyl-2,3-dideoxy- α -D-glucopyranosid-3-yl}-glycoloyl]-L- α -aminobutanoyl-D-isoglutamine benzyl ester (16), which was obtained after lyophilization from benzene; $[\alpha]_D + 37^\circ$ (c 0.5, CHCl₃). FABMS: m/z 1978.5 (M + Na). Anal. Calcd for $C_{116}H_{187}N_5O_{19}$ (1954.5): C, 71.22; H, 9.64; N, 3.58. Found: C, 71.45; H, 9.52; N, 3.41.

O-(2-Acetamido-2-deoxy-6-O-stearoyl- β -D-glucopyranosyl)-(1 \rightarrow 4)-N-acetylnormuramoyl-L- α -aminobutanoyl-D-isoglutamine (17).—Compound 13 (200 mg, 0.148 mmol) was hydrogenolyzed in AcOH (14 mL) in the presence of 10% Pd-C catalyst (230 mg) for 15 h at room temperature. At the end of the hydrogenolysis, the apparatus was evacuated, and purged with N₂. The catalyst was filtered off, then washed with AcOH (25 mL), and the filtrate was evaporated. The residue was chromatographed on a silica gel C₁₈ column in 4:1 MeOH-water. Homogeneous fractions were lyophilized from AcOH to yield 17 (85 mg, 62%). CD spectrum (MeOH; deg.cm².dmol⁻¹): Θ_{212} – 4600. Amino acid analysis: glutamic acid, 1.00; α -aminobutyric acid, 0.96; normuramic acid, 0.97; glucosamine, 0.92. FABMS: m/z984.9 (M + Na). Anal. Calcd for C₄₅H₇₉N₅O₁₇ (961.6): C, 56.21; H, 8.87; N, 7.28. Found: C, 56.22; H, 8.81; N, 7.30.

O-[2-Acetamido-2-deoxy-6-O-(2-tetradecylhexadecanoyl)-β-D-glucopyranosyl]-(1 → 4)-N-acetylnormuramoyl-L-α-aminobutanoyl-D-isoglutamine (18).—Compound 15 (150 mg, 0.098 mmol) was hydrogenolyzed in AcOH (10 mL) in the presence of 10% Pd-C catalyst (150 mg) for 15 h at room temperature. At the end of the hydrogenolysis, the apparatus was evacuated, and purged with N₂. The catalyst was filtered off, then washed with AcOH (25 mL), and the filtrate was evaporated. The residue was chromatographed on a silica gel C18 column in 9:1 MeOH-water. Homogeneous fractions were lyophilized from AcOH, to yield 18 (74 mg, 67%). CD spectrum (MeOH; deg.cm².dmol⁻¹): Θ_{212} -5000. Amino acid analysis: glutamic acid, 1.00; α-aminobutyric acid, 0.98; normuramic acid, 0.94; glucosamine, 0.92. FABMS: m/z 1153.1 (M + Na). Anal. Calcd for C₅₇H₁₀₃N₅O₁₇ (1129.8): C, 60.54; H, 9.18; N, 6.19. Found: C, 60.31; H, 9.34; N, 6.09.

ACKNOWLEDGMENTS

The authors thank Dr. H. Votavová for the measurement of CD spectra, Mr. J. Zbrožek for amino acid analyses, and Mrs. V. Součková for skillful technical assistance.

REFERENCES

- 1 J. Farkaš, M. Ledvina, J. Brokeš, J. Ježek, J. Zajíček, and M. Zaoral, *Carbohydr. Res.*, 163 (1987) 63-72.
- 2 M. Ledvina, J. Farkaš, J. Zajíček, J. Ježek, and M. Zaoral, Collect. Czech. Chem. Commun., 54 (1989) 2784-2794.
- 3 M. Ledvina, D. Šaman, and J. Ježek, Collect. Czech. Chem. Commun., 57 (1992) 579-589.
- 4 F. Numata, H. Ishida, K. Nishimura, I. Sekikawa, and I. Azuma, J. Carbohydr. Chem., 5 (1986) 127-132.

- 5 C.A. McLaughlin, S.M. Schwartzman, B.L. Horner, G.H. Jones, J.G. Moffatt, J.J. Nestor, and D. Tegg, Science, 208 (1980) 415-416.
- 6 D. Keglevic', M. Pongracic', and D. Kantoci, Croat. Chem. Acta, 58 (1985) 569-581.
- 7 N.C. Chaturvedi, M.C. Khosla, and N. Anand, J. Med. Chem., 9 (1966) 971-973.
- 8 P.H. Gross and M. Rimpler, Liebigs Ann. Chem., (1986) 37-45.
- 9 C.A.A. van Boeckel, T. Beetz, J.N. Vos, A.J.M. de Jong, S.F. van Aelst, R.H. van den Bosch, J.M.R. Mertens, and F.A. van der Vlugt, J. Carbohydr. Chem., 4 (1985) 293-321.
- 10 H. Paulsen, P. Himkamp, and T. Peters, Liebigs Ann. Chem., (1986) 664-674.
- 11 H. Ishida, Y. Imai, M. Kiso, A. Hasegawa, T. Sakurai, and I. Azuma, *Carbohydr. Res.*, 195 (1989) 59-66.
- 12 B. Castro, J.R. Dormoy, G. Evin, and C. Selve, Tetrahedron Lett., (1975) 1219-1222.
- 13 S. Kusumoto, M. Inage, T. Shiba, I. Azuma, and Y. Yamamura, Tetrahedron Lett., (1978) 4899-4902.
- 14 R. Kuhn, H.H. Baer, and A. Seeliger, Justus Liebigs Ann. Chem., 611 (1958) 236-241.
- 15 R. Orlando, C.A. Bush, and C. Fenselau, Biomed. Environ. Mass Spectrom., 19 (1990) 747-754.
- 16 T. Vaisar, unpublished results.