SOME PHOSPHINE OXIDE COMPLEXES OF THORIUM(IV) AND URANIUM(IV) TETRACHLORIDE AND TETRA-N-THIOCYANATES

IKHTIAR AHMED and KENNETH W. BAGNALL

Chemistry Department, University of Manchester, Manchester, M13 9PL (Gt. Britain) (Received September 23, 1983)

Summary

The complexes $MCl_4 \cdot xL$ (x = 2, $M \equiv U$, $L \equiv P(CH_3)_2(C_6H_5)O$ (dmppo); x = 2.5, $M \equiv U$, $L \equiv PCH_3(C_6H_5)_2O$ (mdppo); x = 3, $M \equiv Th$ and U, $L \equiv mdppo$; x = 3.5, $M \equiv Th$ and U, $L \equiv dmppo$ and mdppo) have been prepared. The IR and UV-visible ($M \equiv U$ only) spectra of the complexes are reported, and some possible coordination arrangements for the tetrachloride complexes are discussed in terms of a cone angle factor approach to steric crowding about the metal atoms in these compounds.

1. Introduction

A variety of trimethylphosphine oxide (tmpo) complexes $MCl_4 \cdot xtmpo$ have been recorded for $M \equiv$ Th (with x = 2, 3 [1] or 6 [2]) and $M \equiv U$ (with x = 2 [2-4], 3 [2,3] or 6 [2,4]), whereas only bis complexes MCl₄·2L appear to be formed with the bulkier triphenylphosphine oxide (tppo) for $M \equiv Th [1, 5, 7]$ and $M \equiv U [3, 5, 7, 8]$ and with PEt_2PhO ($Et \equiv C_2H_5$; $Ph \equiv C_6H_5$) and PEtPh₂O for $M \equiv Th$ [1] and U [3]. However, the 1:2 stoichiometry reported for the PEt₂PhO and PEtPh₂O complexes is limited by the preparative methods used, namely chlorine oxidation in a hot ethanol solution containing the stoichiometric quantities of $ThCl_4$ and the phosphine [1] or the phosphonium salt $[PRR'_{2}H]_{2}UCl_{6}$ (R, R' = Et or Ph) [3], although the bis complexes with $ThCl_4$ seem also to have been obtained by adding ThCl₄ to hot tetrahydrofuran (thf) containing an excess of the ligand [1]. Analogous complexes of the N-thiocyanates $M(NCS)_4 \cdot xL$ are known for $L \equiv \text{tmpo}$ (with x = 6 for $M \equiv \text{Th}$ and x = 4 for $M \equiv U$) and $L \equiv \text{tppo}$ (with x = 4 for M = Th and U) [9]. The structures of UCl₄·6tmpo [10] and UCl₄· 2tppo [11] have been reported, the former being ionic $[UCl(tmpo)_6]^{3+3}Cl^{-}$. whereas the latter is a neutral *cis* octahedral complex, although an unstable trans octahedral isomer has also been reported [12]. It was therefore of interest to prepare complexes of the tetrachlorides and tetra-N-thiocyanates with the slightly less bulky alkaryl phosphine oxides PMe₂PhO (dmppo) $(Me \equiv CH_3)$ and PMePh₂O (mdppo) in order to examine the effects of the increasing bulk of the ligand in the series $PMe_xPh_{3-x}O$ (from x = 0 to x = 3).

2. Experimental details

2.1. Materials

ThCl₄ [13], UCl₄ [14] and tmpo [15] were prepared by published methods and dmppo was prepared in the same way as tmpo using PhPOCl₂ (K and K Laboratories); mdppo was prepared by dequaternization of $MePh_3P^+I^-$ with sodium hydroxide [16]. The quaternary phosphonium salt was obtained by the standard method, reaction of PPh₃ with MeI in toluene. All the experimental work, including the drying of solvents and the handling of the air- and moisture-sensitive tetrahalides and complexes, was carried out as described previously [17, 18].

2.2. Physical measurements

IR and UV-visible spectra were obtained as described previously [19].

2.3. Preparative methods

(a) UCl₄·3mdppo was prepared by adding an excess of mdppo (1.12 g, 5.18 mmol) to a solution of UCl₄ (0.48 g, 1.26 mmol) in thf (30 cm³). The complex separated as a green solid on stirring overnight, was washed with thf $(3 \times 5 \text{ cm}^3)$ and then vacuum dried (8 h). The yield was 72%. The results of analysis were as follows: 22.7% U, 45.4% C, 3.8% H, 13.7% Cl and 9.1% P. UC₃₉H₃₉Cl₄O₃P₃ requires 23.1% U, 45.5% C, 3.8% H, 13.8% Cl and 9.0% P.

The following complexes were prepared in a similar manner from thf.

(1) The yield of ThCl₄·5tmpo was 85% and the results of analysis showed 27.3% Th, 22.0% C, 5.5% H, 17.4% Cl and 17.8% P. ThC₁₅H₄₅Cl₄O₅P₅ requires 27.8% Th, 21.6% C, 5.4% H, 17.0% Cl and 18.6% P.

(2) The yield of UCl₄·4tmpo was 84% and the results of analysis showed 31.3% U, 19.8% C, 5.1% H, 18.6% Cl and 17.0% P. UC₁₂H₃₆Cl₄O₄P₄ requires 31.8% U, 19.3% C, 4.8% H, 18.9% Cl and 16.6% P.

(3) The yield of $2\text{Th}Cl_4 \cdot 7\text{d}mppo$ was 85% and the results of analysis showed 24.8% Th, 36.8% C, 4.4% H, 15.6% Cl and 11.5% P. Th₂C₅₆H₇₇Cl₈O₇P₇ requires 25.4% Th, 36.8% C, 4.25% H, 15.5% Cl and 11.9% P.

(4) The yield of $2UCl_4$ ·7dmppo was 82% and the results of analysis showed 26.5% U, 36.3% C, 4.5% H, 15.7% Cl and $11.3\% P. U_2C_{56}H_{77}Cl_8O_7P_7$ requires 26.0% U, 36.7% C, 4.2% H, 15.5% Cl and 11.8% P.

(5) The yield of ThCl₄·3mdppo was 80% and the results of analysis showed 23.2% Th, 45.0% C, 3.7% H, 14.4% Cl and 8.6% P. ThC₃₉H₃₉Cl₄O₃P₃ requires 22.7% Th, 45.8% C, 3.8% H, 13.9% Cl and 9.1% P.

(b) $2UCl_4 \cdot 5mdppo$ was obtained by dissolving $UCl_4 \cdot 3mdppo$ (0.3 g) in methyl cyanide (15 cm³), followed by addition of thf (15 cm³) and a few drops of *n*-pentane. The green crystalline product which separated on standing for 3 days was washed with a 1:1 (by volume) mixture of thf and *n*-pentane (3 × 5 cm³) and then vacuum dried (6 h). The yield was 30%. The results of analysis showed 25.8% U, 42.4% C, 3.7% H, 15.6% Cl and 8.6% P. $U_2C_{65}H_{65}Cl_8O_5P_5$ requires 25.9% U, 42.4% C, 3.5% H, 15.4% Cl and 8.4% P. (c) UCl₄·2dmppo separated as a very pale green precipitate when the stoichiometric quantity of dmppo (0.42 g, 2.73 mmol) was added to a solution of UCl₄ (0.52 g, 1.37 mmol) in thf (30 cm³). The mixture was stirred for 12 h and then the product was washed and dried as in (a). The yield was 76%. The results of analysis showed 34.6% U, 28.2% C, 3.3% H, 19.8% Cl and 9.2% P. UC₁₆H₂₂Cl₄O₂P₂ requires 34.6% U, 27:9% C, 3.2% H, 20.6% Cl and 9.0% P.

(d) Th(NCS)₄·4dmppo was prepared by treating ThCl₄ (0.48 g, 1.28 mmol), dissolved in thf (30 cm³), with the stoichiometric amount of KNCS (0.50 g, 5.15 mmol). After stirring for 12 h, an excess of dmppo (1.36 g, 8.83 mmol) was added; the mixture was then stirred for 18 h, after which the supernatant was evaporated to dryness. The white residue was washed with a 1:2 (by volume) mixture of toluene and *n*-pentane (3×5 cm³) and vacuum dried (8 h). The yield was 40%. The results of analysis showed 21.2% Th, 40.4% C, 4.2% H, 4.9% N, 11.6% P and 11.7% S. ThC₃₆H₄₄N₄O₄P₄S₄ requires 21.5% Th, 40.0% C, 4.1% H, 5.2% N, 11.5% P and 11.9% S.

The following were obtained in the same way.

(1) The yield of U(NCS)₄·4dmppo was about 50% and the results of analysis showed 21.2% U, 38.9% C, 3.8% H, 4.9% N, 11.1% P and 12.1% S. UC₃₆H₄₄N₄O₄P₄S₄ requires 21.9% U, 39.8% C, 4.1% H, 5.2% N, 11.4% P and 11.8% S.

(2) The yield of Th(NCS)₄·4mdppo was about 50% and the results of analysis showed 17.1% Th, 49.9% C, 3.9% H, 4.5% N, 8.9% P and 10.0% S. ThC₅₆H₅₂N₄O₄P₄S₄ requires 17.5% Th, 50.6% C, 3.9% H, 4.2% N, 9.3% P and 9.7% S.

(3) The yield of U(NCS)₄·4mdppo was about 50% and the results of analysis showed 17.3% U, 50.7% C, 3.9% H, 3.8% N, 9.4% P and 10.2% S. UC₅₆H₅₂N₄O₄P₄S₄ requires 17.8% U, 50.4% C, 3.7% H, 4.2% N, 9.3% P and 9.6% S.

3. Results and discussion

3.1. The complexes

The white thorium(IV) and green uranium(IV) tetrachloride complexes were prepared by reaction of the metal tetrachloride with the appropriate ligand in non-aqueous media. In the preparations using an excess of ligand, products of composition ThCl₄·5tmpo, UCl₄·4tmpo, MCl₄·3mdppo ($M \equiv$ Th, U) and 2MCl₄·7dmppo ($M \equiv$ Th, U) were obtained, whereas with the stoichiometric quantity of dmppo the complex UCl₄·2dmppo was isolated. However, ThCl₄·2dmppo could not be obtained pure by this method. UCl₄·3mdppo yielded the complex 2UCl₄·5mdppo on recrystallization, but ThCl₄·3mdppo did not degrade in this way.

In an attempt to ascertain the possible bonding arrangements in these complexes, the cone angle factor (CAF) approach to steric crowding [20] was applied to them. The calculated values of Σ CAF for 17 uranium(IV)

compounds of known structure average 0.80 ± 0.03 [20] and for values of Σ CAF less than 0.77, secondary crowding arising from bulky groups R in phosphine oxides PR₃O, such as $R \equiv C_6H_5$ or $(CH_3)_2N$, is necessary to achieve the formation of stable complexes. The average value of Σ CAF calculated for 20 thorium(IV) complexes of known structure is 0.80 ± 0.04 [21]. The average values of CAF for the oxygen atom of a phosphine oxide are 0.10 for thorium(IV) and 0.11 for uranium (IV), and the values for a terminal chlorine atom and the nitrogen atom of the NCS group are 0.14 and 0.11 respectively for both thorium(IV) and uranium(IV) [21].

The solid reflectance spectrum of the dmpo complex $2UCl_4 \cdot 7dmppo$ includes bands at 1110, 1380 and 1560 nm, suggesting the presence of a seven-coordinate uranium(IV) centre as found for $[U(NCS)_4(dmiba)_3]$ (dmiba $\equiv Me_2CHCONMe_2$) in the spectrum of which these bands appear at 1130, 1390 and 1590 nm [22]. However, the spectrum of the complex in methyl cyanide solution exhibits both six- and seven-coordinate uranium(IV) features respectively at 1090, 1920 and 1950 nm and at 1125, 1350 and 1570 nm. This suggests that in the complexes $2MCl_4 \cdot 7dmppo (M \equiv Th, U)$ there are two centres, the most likely forms being $[MCl(dmppo)_6]^{3+}$ - $[MCl_5(dmppo)]^{-}2Cl^{-}$, for which the values of ΣCAF for the complex cation and anion would be 0.74 and 0.80 for M \equiv Th and 0.80 and 0.81 for M \equiv U. A less likely alternative for M \equiv Th only would be $[ThCl(dmppo)_7]^{3+}$ - $[ThCl_6]^{2-}Cl^{-}$, for which ΣCAF would be 0.84 for both complex ions.

The solid reflectance spectrum of $2UCl_4 \cdot 5mdppo$ shows six-coordinate (1100, 1895 and 1950 nm) and seven-coordinate uranium(IV) (1130, 1370 and 1660 nm) features, although its solution spectrum in methyl cyanide is predominantly that of six-coordinate uranium(IV). The reflectance spectrum suggests that the complex may be similar in structure to $2UCl_4 \cdot 5depa$ (depa \equiv EtCONEt₂), [UCl₃(depa)₄]⁺[UCl₅(depa)]⁻ [23], but if so the values of ΣCAF for the cation and anion would be 0.86 and 0.81 respectively, whereas the corresponding values for [UCl₂(mdppo)₅]²⁺[UCl₆]²⁻ would be 0.83 and 0.84 respectively, which seems more likely.

For UCl₄· 3mdppo the solid reflectance spectrum shows a six-coordinate uranium(IV) feature at 1090 nm and seven-coordinate features at 1130, 1405, 1640 and 1670 nm, while in methyl cyanide solution additional six-coordinate features at 1930 and 1980 nm are prominent. Consequently the tris complexes MCl₄· 3mdppo (M = Th, U) are unlikely to be either neutral species ($\Sigma CAF = 0.86$ (thorium) or $\Sigma CAF = 0.89$ (uranium)) or analogous to UCl₄· 3dmso (= [UCl₂(dmso)₆]²⁺[UCl₆]²⁻ [24]) (dmso = dimethyl sulphoxide), with values of ΣCAF for the cation and anion of 0.88 and 0.84 (thorium) and 0.94 and 0.84 (uranium), but are more likely to be of the form [MCl₂(mdppo)₅]²⁺[MCl₅(mdppo)]⁻Cl⁻, with $\Sigma CAF = 0.78$ and 0.80 (thorium), and $\Sigma CAF = 0.83$ and 0.81 (uranium).

The solid reflectance and solution spectra of UCl_4 ·4tmpo show the presence of a six-coordinate uranium(IV) centre, but no evidence for other coordination number sites could be obtained. It is possible that the structures of the tmpo complexes may be related to that of UCl_4 ·6tmpo

 $(\equiv [UCl(tmpo)_6]^{3+}3Cl^-$ [10]), with ThCl₄·5tmpo probably of the form $[ThCl_2(tmpo)_5]^{2+}2Cl^-$ ($\Sigma CAF = 0.78$), and UCl_4 ·4tmpo possibly of the form $[UCl_2(tmpo)_4]^{2+}2Cl^-$ ($\Sigma CAF = 0.72$), but these are only speculations and crystal structure determinations are required to confirm or disprove all the above-suggested structures.

The corresponding N-thiocyanates $M(NCS)_4 \cdot 4L$ prepared from the tetrachloride and the stoichiometric quantity of KNCS in thf, together with an excess of the ligand, are probably neutral complexes for $M \equiv Th$ ($\Sigma CAF = 0.84$) but, although this seems rather unlikely for the uranium analogues ($\Sigma CAF = 0.88$), their solid reflectance and solution (in thf) spectra are consistent with the presence of eight-coordinate uranium(IV), being almost identical with the spectrum of U(NCS)₄·4dmpa (dmpa = EtCONMe₂) [22], so that an ionic species of the form $[U(NCS)_3L_4]^+NCS^-$ ($\Sigma CAF = 0.77$) seems to be ruled out.

3.2. IR spectra

In the IR spectra of the complexes (Table 1), the shifts in ν_{PO} for the dmppo and mdppo complexes are intermediate between those observed [2, 3, 9] for the known tmpo and tppo complexes except for UCl₄· 2dmppo, for which the shift is comparable with that reported [3] for UCl₄· 2dmppo. In the spectra of the *N*-thiocyanate complexes, ν_{CN} appears at 2015 - 2080 cm⁻¹, which is consistent with nitrogen bonding of the thiocyanate group [25] and the relatively high intensity of this feature also suggests nitrogenbonded thiocyanate [26, 27]. The C–S mode in the IR spectra of nitrogenbonded thiocyanate suggests at 760 - 880 cm⁻¹, compared with 700 cm⁻¹ for sulphur-bonded thiocyanate [28, 29], but this feature could not be identified in the spectra owing to interference from modes arising

TABLE 1

Complex	$\nu_{\rm PO}~({\rm cm}^{-1})$	$\Delta \nu_{\rm PO} ({\rm cm}^{-1})$	$v_{\mathrm{M-Cl}} (\mathrm{cm}^{-1})$	$v_{\rm CN}~({\rm cm}^{-1})$
ThCl ₄ .5tmpo	1105	58 ^a	250	
UCl ₄ ·4tmpo	1070	93 p	252	
2ThCl ₄ ·7dmppo	1090	85	260	
2UCl ₄ ·7dmppo	1088	87	255	
UCl ₄ ·2dmppo	1045	130	260	
ThCl ₄ ·3mdppo	1080	90	248	-
UCl ₄ ·3mdppo	1080	90	255	
2UCl ₄ ·5mdppo	1070	100	255	
Th(NCS) ₄ ·4dmppo	1065	110		2020
U(NCS) ₄ ·4dmppo	1070	105	-	2015
Th(NCS) ₄ ·4mdppo	1070	100		2040
U(NCS) ₄ ·4mdppo	1080	90	_	2080, 2040

The IR spectra of the complexes

^a Δv_{PO} = 88 and 101 cm⁻¹ for ThCl₄·6tmpo [2].

 ${}^{b}\Delta\nu_{PO} = 101 \text{ cm}^{-1} \text{ for UCl}_{4} \cdot 6 \text{tmpo [2]}.$

from the organic ligands. Solution IR spectra showed that all the neutral ligand molecules were bonded to the metal atom.

Acknowledgments

The authors wish to thank Mr. M. A. Hart for the microanalyses (of carbon, hydrogen, nitrogen, chlorine, phosphorus, sulphur, thorium and uranium); one of us (I.A.) is indebted to the Commonwealth Scholarship Commission for the award of a scholarship.

References

- 1 M. A. Wassef, Indian J. Chem., 13 (1975) 1203.
- 2 Z. M. S. Al-Kazzaz, K. W. Bagnall and D. Brown, J. Inorg. Nucl. Chem., 35 (1973) 1493.
- 3 P. Gans and B. C. Smith, Chem. Ind. (London), (1963) 911; J. Chem. Soc., (1964) 4172.
- 4 J. G. H. du Preez, B. J. Gellatly and M. L. Gibson, J. Chem. Soc., Dalton Trans., (1977) 1062.
- 5 B. C. Lane and L. M. Venanzi, Inorg. Chim. Acta, 3 (1969) 239.
- 6 B. C. Smith and M. A. Wassef, J. Chem. Soc. A, (1968) 1817.
- 7 D. Brown, J. Hill and C. E. F. Rickard, J. Chem. Soc. A, (1970) 497.
- 8 J. P. Day and L. M. Venanzi, J. Chem. Soc. A, (1966) 197.
- 9 Z. M. S. Al-Kazzaz, K. W. Bagnall and D. Brown, J. Inorg. Nucl. Chem., 35 (1973) 1501.
- 10 G. Bombieri, E. Forsellini, D. Brown and B. Whittaker, J. Chem. Soc., Dalton Trans., (1976) 735.
- 11 G. Bombieri, D. Brown and R. Graziani, J. Chem. Soc., Dalton Trans., (1975) 1873.
- 12 G. Bombieri, F. Benetollo, K. W. Bagnall, M. J. Plews and D. Brown, J. Chem. Soc., Dalton Trans., (1983) 343.
- 13 K. W. Bagnall, D. Brown, P. J. Jones and J. G. H. du Preez, J. Chem. Soc. A, (1966) 737.
- 14 J. A. Hermann and J. F. Suttle, Inorg. Synth., 5 (1957) 143.
- 15 A. B. Burge and W. E. McKee, J. Am. Chem. Soc., 73 (1951) 4590.
- 16 D. D. Cofman and C. S. Marvel, J. Am. Chem. Soc., 51 (1929) 3496.
- 17 K. W. Bagnall, J. G. H. du Preez, J. Bajorek, L. Bonner, H. Cooper and G. Segal, J. Chem. Soc., Dalton Trans., (1973) 2682.
- 18 K. W. Bagnall, J. G. H. du Preez, J. Edwards and R. F. Warren, J. Chem. Soc., Dalton Trans., (1975) 140.
- 19 I. Ahmed, K. W. Bagnall, L. Xing-fu and P. Po-jung, J. Chem. Soc., Dalton Trans., to be published.
- 20 K. W. Bagnall and L. Xing-fu, J. Chem. Soc., Dalton Trans., (1982) 1365.
- 21 L. Xing-fu, Ph.D. Thesis, Manchester University, Manchester, 1982.
- 22 K. W. Bagnall, L. Xing-fu, G. Bombieri and F. Benetollo, J. Chem. Soc., Dalton Trans., (1982) 19.
- 23 K. W. Bagnall, R. L. Beddoes, O. S. Mills and L. Xing-fu, J. Chem. Soc., Dalton Trans., (1982) 1361.
- 24 G. Bombieri and K. W. Bagnall, J. Chem. Soc., Chem. Commun., (1975) 188.
- 25 A. Sabatini and I. Bertini, Inorg. Chem., 4 (1965) 1665; 5 (1966) 1025.
- 26 S. Fronaeus and R. Larsson, Acta Chem. Scand., 16 (1962) 1447.
- 27 C. Pecile, Inorg. Chem., 5 (1966) 210.
- 28 J. Lewis, R. S. Nyholm and P. W. Smith, J. Chem. Soc., (1961) 4590.
- 29 A. Turco and C. Pecile, Nature (London), 191 (1961) 66.