Liebigs Ann. Chem. 1984, 78-84

Antibiotika aus Gleitenden Bakterien, XVIII¹⁾

Die absolute Konfiguration der Myxalamide A und B

Rolf Jansen *a, William S. Sheldrick^b und Gerhard Höfle^a

GBF, Gesellschaft für Biotechnologische Forschung mbH, Abteilung für Naturstoffchemie^a und Abteilung Physikalische Meßtechnik^b Mascheroder Weg 1, D-3300 Braunschweig

Eingegangen am 5. Juli 1983

Die absolute Konfiguration von Myxalamid A (1) und B (2) wurde aus den Ozonolyseprodukten von Myxalamid A (1) und Di-O-acetylmyxalamid B (5) abgeleitet. Mit einer Röntgenstrukturanalyse des 3-Acetoxy-2-methyl-4-oxopentansäure-p-bromphenacylesters (11) wurde die R-Konfiguration für C-12 und C-13 bestimmt. Die S-Konfiguration von C-1' wurde durch Vergleich von synthetischem O-Acetyl-N-pyruvoyl-t-alaninol (12) mit dem identischen Abbauprodukt ermittelt. Aus dem Abbau zu (S)-2-Methylbuttersäure (17) folgt S-Konfiguration für das zusätzliche Chiralitätszentrum C-16 im Myxalamid A (1).

Antibiotics from Gliding Bacteria, XVIII¹⁾. - The Absolute Configuration of Myxalamide A and B

The absolute configuration of myxalamide A (1) and B (2) was deduced from the ozonolysis products of myxalamide A (1) and di-O-acetylmyxalamide B (5). The R configuration was determined for C-12 and C-13 from X-ray analysis of p-bromophenacyl 3-acetoxy-2-methyl-4-oxopentanoate (11). The S configuration of C-1' was derived by comparison of synthetic O-acetyl-N-pyruvoyl-L-alaninol (12) with the identical degradation product. For the additional chiral center C-16 in myxalamide A (1) S configuration follows from degradation to (S)-2-methyl-butyric acid (17).

Die Myxalamide A (1), B (2), C (3) und D (4) sind eine Gruppe neuer antibakterieller und fungizider Antibiotika, die aus den Zellen von *Myxococcus xanthus*, Stamm Mx x12 (GBF), isoliert wurden²⁾. Spektroskopische Untersuchungen ergaben für die Myxalamide die Konstitution von Amiden aus homologen, hoch ungesättigten Hydroxyfettsäuren mit Alaninol³⁾. Ab C-8 sind Myxalamid B (2) und D (4) mit einem Teil der Seitenkette von Piericidin A₃ (6) bzw. A₁ (7) identisch⁴⁾. Da im Fall der Piericidine der Feinbau dieses Molekülteils nur wenig zur atmungshemmenden Wirkung beiträgt⁵⁾, ist es auffällig, daß Myxalamid B (2) wie Piericidin A₁ (7) im in-vitro-Versuch mit submitochondrialen Partikeln aus Rinderherzen eine starke Hemmung der NADH-Ubichinon-Oxidoreduktase zeigt²⁾.

Alle Myxalamide besitzen drei Chiralitätszentren (C-1', C-12, C-13). In Myxalamid A (1) ist zusätzlich C-16 chiral. Die absolute Konfiguration dieser Kohlenstoffe wurde aus verschiedenen Ozonolyseprodukten bestimmt. Für C-1', C-12 und C-13 wurde die Stereochemie am Beispiel der Hauptkomponente Myxalamid B (2) untersucht.

Die Asymmetriezentren C-12 und C-13 sind als C-2 und C-3 in dem geschützten Lävulinsäurederivat 9 enthalten, das bei der Ozonolyse des Di-O-acetylmyxalamid B³ (5) entsteht. Zur Identifizierung von 9 wurde eine Probe der sauren Ozonolyseprodukte mit Diazomethan verestert und durch präparative Gaschromatographie getrennt. Das ¹H-NMR-Spektrum des Methylesters 10 ($[\alpha]_D^{20} = +15.0, c = 0.1$ in Dichlormethan) ist mit dem Spektrum des aus Di-O-acetylpiericidin A₁ (8) isolierten Methylesters 10⁶ identisch. Die entsprechenden Asymmetriezentren haben demnach die gleiche relative Konfiguration. Für die Bestimmung der absoluten Konfiguration wurde die Säure 9 im Rohprodukt der Ozonolyse zum *p*-Bromphenacylester 11 umgesetzt, der gut chromatographisch gereinigt und mit Essigsäure-ethylester/Heptan kristallisiert werden konnte. Die Röntgenstrukturanalyse ergab für C-2 die S- und für C-3 die *R*-Konfiguration (Abb. 1).

11 ($C_{10}H_{17}O_6Br$) kristallisiert monoklin in der Raumgruppe P_{2_1} mit a = 2471.8(2), b = 658.0(1), c = 529.1(1) pm, $\beta = 95.33(1)^\circ$, Z = 2 und $D_c = 1.49$ g/cm⁻³. Die Kristalldimension betrug $0.70 \cdot 0.56 \cdot 0.34$ mm. Die Röntgenintensitäten wurden auf einem Diffraktometer Synthex P_{2_1} im Θ -2- Θ -Betrieb unter Verwendung von Cu- $K\alpha$ -Strahlung gemessen. Bei den Daten wurde eine empirische Absorptionskorrektur [μ (Cu- $K\alpha$) = 32.8 cm⁻¹] angebracht. Die Datenreduktion ergab 1506 unabhängige Reflexe ($3.0 \le 2\Theta \ge 130^\circ$) mit $F^2 \le 2.0 \sigma(F^2)$. Die Position des Bromatoms wurde mit Hilfe einer Patterson-Synthese, die der restlichen Atome durch Differenz-Fourier-Synthesen gefunden. Die Struktur wurde zu R = 0.045 und $R_w = 0.049$ verfeinert, wobei die Gewichte durch die Gleichung $w = k[\sigma^2(F_0) + 0.002 F_0^{-2}]^{-1}$ bestimmt waren. Die kristallographischen Berechnungen wurden mit dem Programm SHELX⁷) sowie mit eigenen (W.S.S.) durchgeführt. Die Lageparameter der Atome sind aus Tab. 1 zu entnehmen, die zugehörigen anisotropen Temperaturfaktoren aus Tab. 2. Bindungslängen und -winkel sind in Tab. 3 wiedergegeben^{*}).

Liebigs Ann. Chem. 1984

^{*)} Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 50563, des Autors und des Zeitschriftenzitats angefordert werden.

BR(1) C(1) C(2) O(21) C(3) G(31)	x/a	y/b	z/c	Ueq	
	0.9624(1 0.6017(2 0.6326(2 0.6468(2 0.6493(2 0.6493(2 0.66996(1) $\theta_{+}0000()$) $-\theta_{+}5266(10)$) $-\theta_{+}3846(9)$) $-\theta_{+}4295(7)$) $-\theta_{+}1780(8)$) $-\theta_{+}1987(6)$	0,5744(1) 0,9146(11) 1,0911(9) 1,3088(6) 0,7995(8) 0,7994(5)	95(1) 67(3) 60(3) 92(3) 50(2) 53(2)	
C(31) C(32) C(32) C(4) C(41) C(5)	0,5607(2 0,5492(2 0,5237(2 0,7021(2 0,7469(2 0,7213(2) -4.0511(8)) -0.0780(9)) 0.0350(12)) -0.1932(8)) -0.3022(10)) 0.062(10)	0.8741(9) 1.0862(7) 0.8636(11) 0.8633(9) 1.0315(11) 0.8053(7)	56(3) 85(3) 76(3) 49(2) 68(3) 53(2)	
C(51) C(6) C(7) C(8) C(81) C(9) C(12)	0.7127(2 0.7536(1 0.7796(2 0.8267(2 0.8361(2 0.8361(2 0.8592(2 0.8592(2 0.8476(2) 0.1711(7) 0.0067(7) 0.1926(10) 0.2413(9) 0.1355(8) 0.4257(9) 0.4257(9) 0.5462(9)	0,9138(8) 0,6133(5) 0,5547(9) 0,7519(9) 0,7519(7) 0,7081(8) 0,4962(9)	71(2) 67(2) 69(3) 58(2) 84(2) 56(2) 66(3)	
C(11) C(12) C(13) C(13) C(14)	0.9201(0.933)(0.9720(20.9720) 20.9720(20.9720)	$\begin{array}{l} 0.7212(10)\\ 0.7699(10)\\ 0.6499(11)\\ 0.4761(11) \end{array}$	0.4569(10) 0.6334(11) 0.8424(10) 0.8783(9)	70(3) 68(3) 75(3) 65(3)	

Tab. 1a. Lageparameter der Nichtwasserstoffatome in 11

Tab. 1b. Lageparameter der H-Atome in 11 mit isotropen Temperaturfaktoren $[\dot{A}^3 \times 10]$

	x/8		у/ь	2/5	U	
8(11)	0.6033(2)	-0.4740(10)	0.7221(11)	151(13)	
H(12) H(13)	0.5599(0.6227(2) 2)	-0.5458(10) -0.6702(18)	0,9528(11) 0,9389(11)	151(13) 151(13)	
н(3) Н(321)	0,6534(0,4833(2) 2)	-0.0817(8) 0.0752(12)	1.1616(8) 8.7877(11)	60(10) 151(13)	
H(322) H(323)	0,5213(0,5440(2) 2)	-0.0766(12) 0.1699(12)	0.5142(11) 0.6017(11)	151(13) 151(13)	
В(4) Н(41)	0.6935(0.7353(2) 2)	-0.2795(8)	0.6987(9)	60(10) 151(13)	
H(42) H(43)	0.7541(2)	-0.2416(10)	1,2213(11)	151(13)	
H(71) H(72)	0,7949(2)	0.1786(10)	0.3707(9)	101(8)	
H(10)	0.8146(2)	0.5062(9)	0.3580(9)	101(8)	
H(13)	0.9668(2)	0.6902(11)	0.9782(10)	101(8)	
H(14)	0.9134(2)	0.3/33(11)	1.0407(9)	101(8)	

Tab. 2. Anisotrope Temperaturfaktoren {Å³ × 10] in der Form: exp[$-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{13}lhc^*a^* + 2U_{12}hka^*b^*)$]

	U 11	ບ 22	U 33	23	и 13	U 12
BR(1)	85(1)	80(1)	121(1)	+4(1)	11(1)	-36(1)
C(1)	72(3)	51(3)	80(3)	-14(3)	9(2)	-11(3)
C(2)	79(3)	51(3)	50(2)	-3(2)	14(2)	-137 33
0(21)	145(4)	79(3)	49(2)	15(2)	4 (2)	-21(3)
c(3)	55(2)	52(3)	43(2)	-5(2)	3(2)	=4(2)
0(31)	53(1)	58(2)	48(1)	-1(1)	4(1)	41 1
C(31)	55(2)	53(3)	60(2)	=10(2)	9 (2)	-1(2)
0(32)	82(2)	108(4)	70(2)	8(2)	29(2)	101 2
C(32)	77(3)	79(5)	77(3)	-17(3)	+5(2)	20(3
C(4)	50(2)	44(2)	53(2)	-7(2)	6 (2)	81.2
C(41)	66(3)	56(3)	86(3)	2(3)	+2(2)	101 3
C (5)	55(2)	52(3)	51(2)	+6(2)	5(2)	-3(2
0(51)	81(2)	49(2)	87 (2)	-14(2)	24(2)	-7(2
0(6)	76(2)	67(2)	59(2)	-8(2)	19(1)	-20(2
C(7)	77(3)	72(4)	57(2)	2 (3)	9(2)	+23(3
C(8)	50(2)	65(3)	59(2)	1 (2)	13(2)	-3(2
0(01)	71(2)	99(3)	81(2)	29(3)	3(2)	-9(2
(9)	51(2)	65(3)	54(2)	1(2)	9(2)	3(2
C(12)	59(2)	66(4)	78(3)	8 (3)	-3(2)	-11(2)
C(11)	67(3)	69(4)	73 (3)	6 (3)	0(2)	-36 3
C(12)	50(2)	74(4)	81(3)	-17 (3)	11 (2)	-3(2
can	59(3)	87(4)	77(3)	-6(3)	+5(2)	+9(3
C(14)	60(2)	72(4)	63(2)	3(3)	4(2)	-4(3

Die (2*S*, 3*R*)-Konfiguration für 11 führte gegenüber der (2*R*, 3*S*)-Konfiguration zu einer signifikanten Verbesserung des *R*-Wertes auf dem 0.005-Niveau (Hamilton-*R*-Test). Im Myxalamid B (2) liegen C-12 und C-13 folglich in der *R*-Konfiguration vor. Entgegen der bisherigen Annahme sind die entsprechenden Zentren im Piericidin A₁ (7) nach unseren Ergebnissen⁸⁾ ebenfalls *R*-konfiguriert.

188.2(6)	C(2) -C(1)	149.1(6)
121.0(6)	C(3) +C(2)	152.1(7)
145.7(5)	C(4) -C(3)	154.81 7)
134,3(5)	C(32) -C(31)	119.6(6)
148.8(7)	C(41) =C(4)	153,3(7)
149,9(8)	0(51) -C(5)	119,9(7)
134.9(5)	C(7) -O(6)	142,9(8)
152,3(6)	0(81) -C(8)	124.2(7)
148.6(9)	C(10) -C(9)	138,9(7)
137,8(6)	C(11) =C(10)	137.5(8)
139.0(7)	C(13) -C(12)	137.2(8)
139,1(9)		
122.2(5)	C(3) -C(2) -C(1)	119.6(4)
118.1(5)	0(31) -C(3) -C(2)	111.0(4)
111.1(4)	C(4) -C(3) -C(31)	104.6(3)
116.0(3)	0(32) -C(31) -C(31)	122.7(4)
112,1(4)	C(32) -C(31) -C(32)	125.1(5)
111.3(4)	C(5) = C(4) = C(3)	109.4(4)
108.8(4)	0(51) -C(5) -C(4)	127.5(4)
109,5(5)	0(6) -C(5) -C(51)	122.9(5)
115.7(5)	C(8) -C(7) -C(6)	111.2(4)
120.7(5)	C(9) +C(8) +C(7)	117,1(4)
122,2(4)	C(10) -C(9) -C(8)	121,7(4)
119,7(5)	C(14) -C(9) -C(10)	118,6(5)
122.0(4)	C(12) -C(11) -C(10)	118,1(5)
118.5(4)	C(13) -C(12) -ER(1)	120.3(4)
121_1(6)	C(14) = C(13) = C(12)	119.61 51
	188,2(6) 121,0(6) 144,7(5) 144,7(5) 146,7(5) 146,9(6) 152,3(6) 152,3(6) 137,8(6) 137,8(6) 139,1(9) 122,2(5) 118,1(6) 112,1(4) 116,8(6) 112,1(4) 116,8(5) 112,1(5) 112,1(6) 122,2(6) 122,2(7) 114,1(6) 122,2(7) 122,2($\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tab. 3. Bindungslängen [pm] (a) und -winkel [°] (b) in 11

Abb. 1. Molekülstruktur des (25,3R)-3-Acetoxy-2-methyl-4-oxopentansäurep-bromphenacylesters (11)

Liebigs Ann. Chem. 1984

6*

Aus den neutralen Ozonolyseprodukten des Di-O-acetylmyxalamids B (5) konnte durch HPLC O-Acetyl-N-pyruvoylalaninol (12) isoliert werden. Elementarzusammensetzung, Massenspektrum und ¹H-NMR-Spektrum stimmen mit der Struktur 12 überein.

Da das Amid 12 durch eine einfache Synthese gut zugänglich ist, wurde es zur Konfigurationsbestimmung des Asymmetriezentrums C-1' genutzt. L-Alaninol (13) ergab nach Umsetzung mit Methacrylsäurechlorid (14) in Methanol das Amid 15, das zur spontanen Polymerisation neigt und daher sofort mit Essigsäureanhydrid/Pyridin zu 16 acyliert und in Methanol bei -30 °C ozonolysiert wurde. Nach chromatographischer Reinigung fiel die Vergleichssubstanz 12 als langsam kristallisierender Sirup an (Schmp. 37 – 38 °C). Das Syntheseprodukt ist nach den spektroskopischen Daten und dem Gaschromatogramm mit dem natürlichen Brenztraubensäurederivat 12 identisch. Da beide die gleiche optische Drehung zeigen, liegt der Alaninolbaustein im Myxalamid B (2) in der S-Konfiguration vor. Er könnte sich daher im Verlauf der Biogenese direkt aus t-Alanin ableiten.

Das zusätzliche Chiralitätszentrum C-16 des Myxalamids A (1) entspricht C-2 in der 2-Methylbuttersäure (17), die beim Ozonabbau aus dem Kettenende gebildet wird. 17 wurde im Gaschromatogramm der Ozonolyseprodukte durch Vergleich mit *rac*-2-Methylbuttersäure lokalisiert und dann durch präparative Gaschromatographie gewonnen. Nach dem ¹H-NMR-Spektrum liegt reine 2-Methylbuttersäure (17) vor, die einen positiven Drehwert $[\alpha]_D^{20} = +16.3$ (c = 1.1 in Ethanol) $\langle \text{Lit.}^9 \ [\alpha]_D^{22} = +16.2$ und Lit.¹⁰ $[\alpha]_D^{22} = +16.84$ (pure Substanz) \rangle und deshalb S-Konfiguration besitzt. Daraus folgt für C-16 in Myxalamid A (1) ebenfalls S-Konfiguration. Diese Beobachtung entspricht der Vorstellung, daß bei der Biosynthese von Myxalamid A (1) L-Isoleucin oder D-Alloisoleucin für den Starter der Polyketidkette verwendet wird.

Experimenteller Teil

Schmelzpunkte wurden mit einem Reichert-Heiztischmikroskop ermittelt und sind nicht korrigiert. – Optische Drehungen: Perkin-Elmer-241-Polarimeter, 1-dm-Küvetten. – IR-Spektren: Perkin-Elmer-297-IR-Spektrophotometer. – Massenspektren: Spektrometer A.E.I. MS 902 S, Direkteinlaß, 70 eV. – ¹H-NMR-Spektren: Bruker-Spektrometer WM 400 (400.13 MHz), innerer Standard: Chloroform, $\delta = 7.24$. – Gaschromatographie: Kapillar-GC: Packard, Model 428, Flammenionisationsdetektor; Präparative GC: Hewlett-Packard-5730-A-Gaschromatograph, Wärmeleitfähigkeitsdetektor.

(2S,3R)-3-Acetoxy-2-methyl-4-oxopentansäure-p-bromphenacylester (11): 500 mg Di-O-acetylmyxalamid B³⁾ (5) werden in Methanol bei – 35 °C mit Ozon behandelt. Nach Zusatz von Wasser und 30proz. H₂O₂ wird der Alkohol im Rotationsverdampfer entfernt. Die verbleibende wäßrige Lösung wird 15 min im siedenden Wasserbad erhitzt und nach dem Abkühlen mit Essigester extrahiert. Die Säuren des Essigsäure-ethylesterextraktes werden mit Triethylamin neutralisiert, getrocknet und in wasserfreiem Aceton in Gegenwart von Molekularsieb (3Å) mit 400 mg p-Bromphenacylbromid 16 h gerührt. Das Reaktionsgemisch wird bei pH = 2 – 3 zwischen Essigsäureethylester und Wasser verteilt. Der Rückstand aus der organischen Phase wird säulenchromatographisch getrennt: Säule Lobar (Merck), Größe C, gefüllt mit LiChrosorb Si 60, Laufmittel: Heptan/Essigsäure-ethylester, 8:2. Die dünnschichtchromatographisch einheitlichen Fraktionen werden vereinigt (Ausb. 58 mg, 15%). 11 kristallisiert aus Essigsäure-ethylester/Heptan, Schmp. 61 °C; $[\alpha]_{D}^{20} = +11.0$ (c = 0.3 in Chloroform). – IR (Chloroform): 1747, 1710, 1594, 1371, 1071, 967 cm⁻¹. – ¹H-NMR (CDCl₃): $\delta = 7.75 - 7.61$ (4H, AA'BB'-System, 4 Aromaten-H), 5.35 und 5.23 (je 1 H, d, Phenacyl-CH₂), 5.28 (1 H, d, J = 4.8 Hz; 3-H), 3.37 (1 H, dq, J = 4.8 und 7.3 Hz; 2-H), 2.24 und 2.19 (je 3H, s; 5-H₃ und 6-H₃), 1.31 (3H, d, J = 7.3 Hz; 7-H₃). – MS (70 eV, 80 °C) Hauptfragmente: m/e (rel. Intensität) = 384/386 (1), 341/343 (2.3), 299/301 (24), 240/242 (46), 215/217 (19), 198/200 (34), 183/185 (76), 171 (10), 169 (5), 155/157 (11), 111 (18), 85 (18), 43 (100%).

N-[(1S)-2-Acetoxy-1-methylethyl]-2-oxopropionamid (12). – a) Aus Di-O-acetylmyxalamid B³) (5): 100 mg 5 werden in 40 ml Methanol bei – 35 °C mit Ozon behandelt. Nach Zusatz von Wasser und H₂O₂ wird der Alkohol im Rotationsverdampfer entfernt. Die verbleibende Wasserphase wird bei pH = 8 mit Essigsäure-ethylester extrahiert. Der Rückstand der getrockneten Essigsäureethylesterphase wird durch präparative Hochdruckflüssigkeitschromatographie an Kieselgel getrennt: Säule (Knauer) 250 × 16 mm, gefüllt mit LiChrosorb Si 100 (Merck), Korngröße 10 µm, Laufmittel: Hexan/2-Propanol, 15:1, Flußgeschwindigkeit 10 ml/min, Detektion: UV-Absorption bei 254 nm; Ausb. 3 mg. – $[\alpha]_D^{21} = -38.3 (c = 0.1 in Dichlormethan). - {}^1H-NMR$ (CDCl₃): $\delta = 7.05 (1H, m, NH, austauschbar mit CD₃OD), 4.24 (1H, m; 1'-H), 4.09 (2H, m;$ 2'-H₂), 2.47 (3H, s; 3-H₃), 2.08 (3H, s; OAc), 1.23 (3H, d, J = 6.8 Hz; 1'-CH₃). – MS (70 eV,40 °C), Hauptfragmente: m/e (rel. Intensität): 187 = M[©] (4), 144 (55), 114 (19), 102 (96), 84 (16),61 (6), 58 (11), 56 (13), 44 (74), 43 (100%).

C₈H₁₃NO₄ Ber. 187.0844 Gef. 187.0847 (MS)

b) Aus (S)-2-Amino-1-propanol (= L-Alaninol, 13): 250 mg (3.3 mmol) 13 (Merck) $\langle [\alpha]_D^{20} = +17.3$ (c = 0.6 in Ethanol), Lit.¹¹ $[\alpha]_{D}^{25} = +21.8$ (c = 2.9 in Ethanol) werden in Gegenwart von 405 mg (4 mmol) Triethylamin bei 0°C in Methanol langsam mit 420 mg (4 mmol) Methacrylsäurechlorid (14) versetzt und bis zum Erreichen von Raumtemperatur gerührt. Nach dem Eindampfen im Rotationsverdampfer wird der Rückstand mit Wasser aufgenommen und mit Essigsäure-ethylester extrahiert. Die organische Phase wird mit Natriumsulfat getrocknet und eingeengt. Das Zwischenprodukt 13 neigt zur spontanen Polymerisation und wird sofort 2 h mit 5 ml Pyridin/Essigsäureanhydrid (1:1) gerührt. Das Reaktionsgemisch wird i. Ölpumpenvak. eingeengt, zweimal mit Toluol versetzt und wieder eingedampft und bei -30 °C in Methanol mit Ozon behandelt. Die Lösung wird mit Wasser, 3 ml 30proz. Wasserstoffperoxidlösung und 3 ml Ameisensäure versetzt, im Rotationsverdampfer von Methanol befreit und nach kurzem Erhitzen im Wasserbad mit Dichlormethan extrahiert. Nach dem Abdestillieren des Lösungsmittels i. Vak. bleiben 520 mg Rohprodukt zurück, die säulenchromatographisch gereinigt werden: Säule Lobar (Merck), Größe C, LiChroprep Si 60, Laufmittel: Heptan/2-Propanol (15:1), Flußgeschwindigkeit 13 ml/min, Detektion: UV-Absorption bei 254 nm. Der Hauptpeak (Retentionszeit 16.8 min) ergab beim Eindampfen 220 mg langsam kristallisierenden Sirup (Ausb. 35%), Schmp. 37-38°C; $\left[\alpha\right]_{D}^{20} = -31.1$ (c = 0.5 in Dichlormethan). - Identisch mit dem durch Abbau von Di-O-acetylmyxalamid B (5) gewonnenen 12 laut ¹H-NMR- und Massen-Spektrum sowie Kapillar-Gaschromatogramm (Säule: 25 m × 0.25 mm, SP 2100, Methylsilicon, 0.7 ml H₂-Gas/min, 110°C, Retentionszeit 3.8 min).

C₈H₁₃NO₄ (187.1) Ber. C 51.33 H 7.00 N 7.48 Gef. C 51.34 H 7.03 N 7.46

(2S)-L-2-Methylbuttersäure (17): 200 mg Myxalamid A (1) werden in Methanol bei -40 °C mit Ozon behandelt. Anschließend wird die Lösung mit 20 ml Wasser versetzt, mit Natriumhydroxid

Liebigs Ann. Chem. 1984

alkalisiert und vom Methanol befreit. Nach Zugabe von 0.5 ml 30proz. Wasserstoffperoxid-Lösung wird 30 min unter Rückfluß erhitzt. Überschüssiges Wasserstoffperoxid wird bei Raumtemp. durch Rühren (1 h) mit Platin-Aktivkohle zersetzt. Nach Filtration wird die alkalische Lösung mit Essigsäure-ethylester gewaschen, auf pH = 2 eingestellt und mit Ether extrahiert. Der Extrakt wird mit Natriumsulfat getrocknet und eingeengt. 17 wird gaschromatographisch durch Vergleich mit rac-2-Methylbuttersäure identifiziert und durch mehrere präparative Chromatographieläufe isoliert; Ausb. 5.4 mg (10%); $R_1 = 5.9$ min; Säule: Länge 180 cm, Durchmesser 4 mm, 5% FFAP auf Chromosorb WHP (80 – 100 mesh), Wärmeleitfähigkeitsdetektion Temp. 130 °C, Flußgeschwindigkeit 60 ml/min He; $[\alpha]_{D}^{22} = +16.3$ (c = 1.1 in Ethanol) (Lit. ⁹⁾ $[\alpha]_{D}^{22} = +16.2$, Lit. ⁽¹⁰⁾ $[\alpha]_{D}^{22} = +16.84$ (jeweils pure Substanz)); $[\alpha]_{D}^{20} = +16.7$ (c = 1.8 in Dichlormethan).

 λ[nm]	578	546	436	365	
$[\alpha]^{22}$ (Ethanol) $[\alpha]^{20}$ (CH ₂ Cl ₂)	+ 16.3 + 17.4	+ 18.5 + 19.8	+ 31.1 + 33.6	+ 45.2 + 53.2	

17 ist im Gaschromatogramm und ¹H-NMR-Spektrum identisch mit rac-2-Methylbuttersäure (Merck-Schuchard).

- ¹⁾ XVII. Mitteilung: W. Kohl, H. Irschik, H. Reichenbach und G. Höfle, Liebigs Ann. Chem. **1983**, 1656.
- ²⁾ K. Gerth, R. Jansen, G. Reifenstahl, G. Höfle, H. Irschik, B. Kunze, H. Reichenbach und G. Thierbach, J. Antibiot. **36**, 1150 (1983).
- ³⁾ R. Jansen, G. Reifenstahl, K. Gerth, H. Reichenbach und G. Höfle, Liebigs Ann. Chem. 1983, 1081.
- ⁴⁾ S. Yoshida, K. Yoneyama, S. Shiraishi, A. Watanabe und N. Takahashi, Agric. Biol. Chem. 41, 855 (1977).
- ⁵⁾ S. Yoshida, Y. Nagao, A. Watanabe und N. Takahashi, Agric. Biol. Chem. 44, 2921 (1980).
- ⁶⁾ N. Takahashi, S. Yoshida, A. Suzuki und S. Tamura, Agric. Biol. Chem. 32, 1108 (1968). Der spezifische Drehwert des Methylesters 10 ist nicht bekannt.
- ⁷⁾ G. M. Sheldrick, SHELX, A Programm of Crystal Structure Determination, Cambridge, England 1976.
- ⁸⁾ R. Jansen und G. Höfle, Tetrahedron Lett. 24, 5485 (1983).
- ⁹⁾ D. D. Davis und F. R. Jensen, J. Org. Chem. 35, 3410 (1970).
- ¹⁰⁾ J. J. Beggs und M. B. Meyers, J. Chem. Soc. B 1970, 930,
- ¹¹⁾ Y. Minoura, M. Takebayshi und C. C. Price, J. Am. Chem. Soc. 81, 4689 (1951).

[163/83]