
A SIMPLE SYNTHESIS OF 2,3-DISUBSTITUTED FURANS

A. Srikrishna^{*} and G. Sunderbabu Department of Organic Chemistry, Indian Institute of Science Bangalore - 560 012 INDIA

<u>Abstract</u>: A general, three step synthesis of 2,3-disubstituted furans <u>via</u> the radical cyclisation of bromoacetal <u>3</u> to 2-ethoxy-4-alkylidene tetrahydrofuran ($\underline{4}$) is described.

In connection with an on going project towards the synthesis of furanoterpenoids, we searched for a mild and short synthesis of 2,3-disubstituted furans.¹ However, we were unable to find a methodology to these compounds which suits our conditions. This led us to develop a short, general and simple synthesis to 2,3-disubstituted furans (<u>1</u>) starting from propargyl alcohols <u>2</u>, based on radical cyclisation reactions,² which is the subject of this communication.

The methodology is depicted in Scheme 1; radical cyclisation of the bromoacetal 3, obtained by bromination of ethyl vinyl ether in presence of propargyl alcohol 2, generates the 2-ethoxy-4-alkylidene tetrahydrofuran (4), which on acid catalysed aromatisation leads to furan 1. The requisite propargyl alcohols were obtained by the reaction of 1-lithio alkynes with appropriate aldehydes. The key radical precursors 3 were obtained, as a mixture of diastereomers in over 85% yield, by a slow addition of ethyl vinyl ether (1.2 eq., 1.5-2 hr) to a cold (-40°C) solution of propargyl alcohols 2 (1 eq.) and NBS (1.2 eq.) in methylene chloride. The radical cyclisation of 3 can be carried out by refluxing a 0.02M solution in benzene with 1.1 eq. of tri-n-butyl tin hydride (TBTH) in the presence of a catalytic amount of azobisisobutyronitrile (AIBN), but was achieved more conveniently using **catalytic** TBTH generated in situ (ⁿBu₃SnCl-NaCNBH₃) in refluxing ^tBuOH (1 hr).³

<u>SCHEME-1</u>: a:CH₂Cl₂, -40^oC, CH₂=CH-OEt, 1.5-2 hr; b:ⁿBu₃SnCl (0.15 eq.), NaCNBH₃ (1.5 eq.), cat. AIBN, ^tBuOH, 1-1.5 hr; c: pTSA, C₆H₆, RT, 5-8 hr.

entry	R	R'	% Yield of		
			3 ^b	4	1
<u>a</u>	n-C ₄ H ₉	n-C ₆ H ₁₃	71	80	62
b	n-C ₄ H ₉	Phenyl	75	70	65
c	n-C4H9	p-Tolyl	66	82	70
d	n-C ₄ H ₉	p-Anisyl	94	78	60
e	n-C6 ^H 13	Ethyl	65	89	63
<u>f</u>	n-C ₆ H ₁₃	Phenyl	70	76	70
đ	n-C6 ^H 13	p-Tolyl	70	70	74
h	n-C6H13	p-Anisyl	65	65	57

Table 1: 2,3-disubstituted furans via radical cyclisation reactions.^a

^aTypically reactions were carried out on one mmole scale. All the compounds were purified over silicagel column and yields refer to isolated and chromatographically pure products.⁴ ^bIn addition varying amounts (5-25%) of starting propargyl alcohol <u>2</u> was also obtained.

Finally, the cylised products $\underline{4}$, obtained as a mixture of four stereoisomers, were transformed to 2,3-disubstituted furans ($\underline{1}$) by treatment with a catalytic amount of toluene-p-sulphonic acid in benzene (5-8 hr) at room temperature. The yields of bromination, radical cyclisation and aromatisation are summarised in table 1.⁴ Currently, this work is being extended to establish the flexbility of this methodology to multiply substituted furans available in nature.

References and notes:

- For recent synthesis see J. Mann and H.J. Holland, Tetrahedron, <u>43</u>, 2533 (1987); M. Ishiguro, N. Ikeda and H. Yamamoto, Chemistry Lett., 1029 (1982); H.J. Reich and R.E. Olson, J. Org. Chem., <u>52</u>, 2315 (1987) and references cited therein.
- Selectivity and synthetic application of radical cyclisation reactions, Tetrahedron symposia in print, ed. B. Giese, Tetrahedron, <u>41</u>, 3887 -4302 (1985); A. Srikrishna, Current Science, <u>56</u>, 392 (1987).
- 3. A. Srikrishna, J. Chem. Soc., Chem. Commun, 587 (1987).
- 4. spectral data for <u>2a</u>: IR (neat), 3360 cm⁻¹; ¹H NMR (60 MHz, CCl₄), δ 4-4.4 (1H,m), 2.4 (1H,s), 2.15 (2H,m), 1.2-1.8 (14H,m), 0.7-1.2 (6H,m); <u>3a</u> (1:1 mixture of diastereomers): IR (neat), 1130, 1040 cm⁻¹; ¹H NMR (60 MHz, CCl₄), δ 4.8 & 4.7 (1H,2t,O-CH-O), 4.2 (1H,m, \equiv C-CH-O), 3.6 (2H, m,OCH₂CH₃), 3.3 (2H,d,J=6Hz,CH₂Br), 2.2 (2H,m, \equiv C-CH₂), 0.7-1.9 (23H,m); <u>4a</u> (mixture of four stereoisomers): IR (neat), 1460, 1050, 980 cm⁻¹; ¹H NMR (60 MHz, CCl₄), δ 4.8-5.4 (2H,m), 4.0-4.4 (1H,m), 3.0-3.8 (2H,m), 2.2-2.6 (2H,m), 1.7-2.2 (2H,m), 1.1-1.6 (14H,m), 0.6-1.0 (6H,m); <u>1a</u>: IR (neat), 1510, 1380, 1150, 1050 cm⁻¹, ¹H NMR (60 MHz, CCl₄), δ 7.05 (1H,d, J=2Hz), 6.0 (1H,d,J=2Hz), 2.1-2.6 (4H,m), 1.1-1.8 (14H,m), 0.9 (6H,t). Similarly all the other compounds gave satisfactory spectral data. (Received in UK 21 October 1987)