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A B S T R A C T

We use a set of StaÈckel potentials to obtain a local approximation for an effective third

integral in axisymmetric systems. We present a study on the feasibility and effectiveness of

this approach. We apply it to three trial potentials of various flattenings, corresponding to

nearly ellipsoidal, discy and boxy density isophotes. In all three cases, a good fit to the

potential requires only a small set of StaÈckel potentials, and the associated StaÈckel third

integral provides a very satisfactory, yet analytically simple, approximation to the trial

potentials effective third integral.

Key words: methods: analytical ± methods: numerical ± galaxies: elliptical and lenticular,

cD ± galaxies: kinematics and dynamics ± galaxies: structure.

1 I N T R O D U C T I O N

It is well known that axisymmetric potentials do not in general

allow a global and isolating third integral in addition to the energy

and the component of the angular momentum along the symmetry

axis. However, for many axisymmetric potentials, numerical

experience shows that the majority of orbits are constrained by an

effective third integral over a large number of orbital periods. As

appears from modelling observed galaxies, a third integral is often

required to describe their dynamical structure (e.g. Binney, Davies

& Illingworth 1990; Dejonghe et al. 1996). Hence it seems

unescapable that distribution functions depending a priori on three

integrals should be available for general models of elliptical

galaxies.

In a stellar dynamical context, the problem of approximating

the effective third integral is logically connected to the philosophy

behind the construction method of dynamical models for galaxies:

obviously, numerical models can do with numerical, or even

implicit third integrals, while analytical models need analytical

approximations.

Amongst the numerical modelling methods, those based on

Schwarzschild's approach (Schwarzschild 1979) are undoubtedly

the most direct ones. In a given potential, a library of orbits is

computed, while the time-averaged properties of the orbits are

stored. The orbit library is supposed to sample integral space. A

reproduction of the observables is sought by combination of

orbits, populated with a non-negative number of stars (e.g. Rix

et al. 1997; van der Marel et al. 1998). This powerful and very

general technique allows us to construct general three-integral

models, without any explicit reference to the third integral, since

in principle orbits can be labelled using any phase-space point on

them. Spectral analysis offers the possibility to simplify the

expression for the orbits and to reduce storage requirements for

the orbits (Binney & Spergel 1982; Papaphilippou & Laskar 1996,

1998; Carpintero & Aguilar 1998; Valluri & Merritt 1998).

However, for this type of modelling methods, the computational

cost is relatively high. Moreover, smoothing is necessary because

the singular boundaries of the orbital densities produce a fairly

awkward sum of numerical functions, and the distribution function

is a numerical function out of which the physical content may not

be very easily extracted. The implicit reference to a third integral,

which makes Schwarzschild methods so flexible, is at the same

time a handicap for extracting information about the role played

by this integral.

Analytical techniques would be more explicit. However, no

expression for a global third integral is known in general

axisymmetric potentials ± except for StaÈckel potentials (cf.

de Zeeuw 1985; Dejonghe & de Zeeuw 1988). Therefore

analytical approximations have been built using perturbation

methods. Systems deviating moderately from spherical symmetry

have been considered, and an approximate integral derived, which

reduces to the total angular momentum in the spherical limit (see

Petrou 1983). Gerhard & Saha (1991) report on the use of three

different perturbation techniques applied to a model that is

initially spherical. (1) Methods based on the KAM theory, which

have a validity that is often restricted to very small perturbations.

In practice, they find indeed that, whatever their order, these

methods fail to track changes in the phase-space topology that

occur when spherical symmetry is broken by a significant amount.

(2) The averaging method (see, e.g., Verhulst 1979 and de Zeeuw

& Merritt 1983) in their example also fails to track the box-orbits

�Lz � 0� that emerge in a flattened system, and it gives at first

order only a rough approximation to the third integral. (3) Finally,

a resonant method using Lie transforms does yield a good
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approximation to the third integral. It tracks the new orbital

families emerging around resonances, and may in principle be

carried on to high order. The analytical expressions are, however,

rather intricate, specially for orders higher than 1.

The last technique has been used at first order by Dehnen &

Gerhard (1993) to construct three integral oblate models for the

perturbed isochrone sphere. An application to the boxy E3±E4

galaxy NGC 1600 has recently been presented by Matthias &

Gerhard (1999).

However, one may need to model a galaxy with a potential that

is far from any known integrable potential, so that global

perturbation techniques become ineffective. An alternative

approach is then to derive a so-called `partial integral'. The idea

is that a third integral that can be easily determined for certain

groups of orbits is probably also a good approximation for similar

orbits. de Zeeuw, Evans & Schwarzschild (1996) and Evans,

HaÈfner & de Zeeuw (1997) derived such a partial integral for thin

and near-thin tube orbits in scale-free potentials.

Yet another well-known approach is the use of separable

potentials. One is led to this idea because motion around the origin

can be expanded in a Taylor series and, since the lowest order,

non-zero terms are quadratic, can be described as perturbed

harmonic motion. Moreover, van de Hulst (1962) has shown that

motion around the origin can be seen as (unperturbed) motion in a

StaÈckel potential. Basically, one then uses a much enlarged set of

reference integrable potentials instead of merely quadratic ones.

The StaÈckel potential is found by fitting term-to-term the Taylor

series for the original potential (up to quartic terms) to the

expansion for the StaÈckel potential. Local fits of similar nature

have been performed by de Zeeuw & Lynden-Bell (1985) and

Kent & de Zeeuw (1991), who applied it to the solar neighbour-

hood, by expanding the effective potential in the vicinity of

circular orbits.

However, such a local fitting does not work for all orbits. For

instance, it may fail for orbits with large radial extent. In many

cases, though, an orbit can still be approximated by motion in a

StaÈckel potential, provided that the potential is chosen to be a

good average approximation to the true potential in the region

covered by that particular orbit (see Kent & de Zeeuw 1991). A

report on the calculation of such a good average and global

approximation to the Galactic potential, together with some

indications for the numerical implementation, can be found in

Dejonghe & de Zeeuw (1988) and Batsleer & Dejonghe (1994).

In this paper we want to improve the generality of the

application of this family of potentials. We propose to obtain a set

of local approximations to the potential using StaÈckel potentials,

each of which is an average approximation to the original

potential in some region. Rather than expanding around an

equilibrium point, which would make the extent of the region

where the approximation holds difficult to handle, we partition

integral space and fit the potential in the corresponding regions of

configuration space. We use the QP method (Dejonghe 1989) to

adjust each local StaÈckel potential. Section 2 describes this. Once

the set of local StaÈckel potentials is obtained, we proceed by

checking the quality of the orbits representation, and of the

approximation for an effective third integral, where it exists.

Obviously, we do not expect to describe the eventual stochastic

motion this way. Moreover, we may not be able to reproduce all

minor orbital families. These questions are also addressed in

Section 2. In Section 3 the actual fitting procedure is explained. Its

performance is illustrated with three trial potentials, which

correspond to mass densities with respectively nearly ellipsoidal,

boxy and discy isophotes. These trial potentials are presented in

Section 4. The results can be found in Section 5. Section 6 gives a

discussion on the application of the method, and the conclusions

are given in Section 7.

2 T H E D E S I G N O F T H E S E T O F S TAÈ C K E L

P OT E N T I A L S

2.1 The principle

Orbits with a given set of integrals �E; J�; with E the (positive)

binding energy and J the component of the angular momentum

along the rotation axis, fill a certain volume S in space (a

meridional section of it is shown in Fig. 1b). The intersection of

this volume with a meridional plane is called the zero-velocity

curve (ZVC). One proves easily that orbits with a set of integrals

(E 0, J), with E 0 . E, fill a volume that is completely embedded in

the volume filled by orbits with the set of integrals (E, J).

Similarly, orbits with E and J 0 larger than J, have a ZVC that lies

inside the ZVC defined by (E, J). This means that all orbits in the

shaded rectangle labelled R in integral space (see Fig. 1a) will

remain interior to the shaded region indicated as S in Fig 1(b).

Any distribution function defined over R in integral space can

q 2000 RAS, MNRAS 311, 297±306

Figure 1. Panel (a): A rectangle R in integral space, of which the `upper

left corner' corresponds to a gridpoint (E, J). Panel (b): All orbits with

E 0 > E and J 0 > J will remain interior to the region S. In practice, the

local StaÈckel potential is determined in the rectangle S 0.

Figure 2. For one value of E in the grid, zero-velocity curves

corresponding to seven different values for J and points used to determine

seven values for I3.
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therefore be associated with a potential that needs only be defined

in S. Hence a subdivision of the (E, J)-plane into a number of

rectangles R is equivalent to subdividing space into a number of

bounded domains S. For each of these domains, a StaÈckel

potential can be determined that is locally a good approximation

to the original potential. If, in the end, the whole (E, J)-plane is

covered by a set of rectanglesR(E, J), also space will be covered by

a set of domains S(E, J), and the original potential will be

completely fitted by a set of locally fitted StaÈckel potentials.

2.2 Practically

In practice, the specification of a set of rectangles R in integral

space is equivalent to the specification of a grid, each gridpoint of

which being the `upper left corner' of R. A grid in E can be

constructed by dividing the system into equal-mass shells and

computing the circular orbit energy for each shell radius. For

every value of E, we consider an equidistant grid in J, with seven

values in the interval ]0, Jmax(E)[, the upper bound corresponding

to the circular orbit with that energy (see also Fig. 2).

In StaÈckel potentials, orbits are determined by three integrals of

motion (E, J, I3). Following van der Marel et al. (1998), the

different third integrals are parametrized with angles v i, that

correspond to the angle between the horizontal axis and the radius

to the most external of the two points where the orbit intersects

the ZVC (see Fig. 2). The point of the ZVC where I3 � I3max is

found. This is the point where the thin tube orbit touches the

ZVC. The coordinates (R, z) of that point determine the angle

vmax � p 2 arctan{z=�R 2 Rc�E��}. The v i are chosen linearly

between 0 and vmax, from which the values for I3(v i) are derived.

As for the fit itself, it suffices to perform the StaÈckel fit to the

potential associated with a rectangle R(E, J) only in the region

interior to the velocity curve S(E, J). In practice, we fit within the

smallest rectangle S 0(E, J) which encompasses S(E, J).

The construction of a set of potentials that covers the complete

system potential is a multistep process. It is most efficient to start

with a global fit to the potential, i.e., fitting a StaÈckel potential in

the most extended domain S 0, determined, e.g., by the data. This

domain defines the smallest value for E. The following steps

improve the fit to the potential by performing a number of local

fits in smaller domains.

The choice of domains where a fit will be performed is in

principle arbitrary, and depends only on how well the StaÈckel

potential has to approximate the system potential (within the

limitations of what a regular potential can achieve).

2.3 When is a fit considered to be a good fit?

The fit is checked by comparing orbits in both potentials. Orbits

start from the ZVC defined by (E, J), at the point determined by

the value of I3. The integration of orbits uses a fourth-order

Runge±Kutta scheme with variable time-steps, proportional to the

smallest of the radial and azimuthal periods, estimated respec-

tively as TR , R=VR and TV , 2pR2=J. This ensures conserva-

tion of energy over 100 TV with a precision better than 1026.

One can consider various criteria for the comparison.

(1) Surfaces of section: The StaÈckel potential should generate

orbits that are very similar to those in the original potential. A first

inspection can be done by comparing surfaces of section (SoSs) in

both potentials. What we mainly expect to find this way is:

(i) the proportion of non-regular orbits. If there is no additional

integral of motion besides E and J, the orbits should fill uniformly

the area bounded by the zero-velocity curve on their SoS

(Richstone 1982). If there is a third effective integral (effectively

meaning over the time the orbits are integrated), orbits are regular,

and appear as curves on the SoS. Experience has taught that in

axisymmetric models, stochastic orbits exist only for very small

values of J. In models with a core, as considered here, these

orbits are due to the large excursions in R and z for small J,

which allow resonances between the two degrees of freedom

(Merritt 1999).

(ii) the minor families of orbits which may be present around

some resonances in the original potential that our StaÈckel potential

does not generate. We call them unrecovered minor families. The

thin tube orbit at fixed (E, J) determines the main orbital family.

This family encircles the origin on the (z, vz) SoS, or a point

(Rth, 0) on the (R, vR) SoS, where Rth(E, J) is the point where the

thin-tube orbit of given (E, J) intersects the equatorial plane.

Minor orbital families may be generated by other resonances than

the ones for small J, and will show up on a SoS as `islands'

surrounding other points.

(2) Orbital densities: Since the StaÈckel potential is aimed to be

used for modelling, which is essentially assembling orbits to fit a

given density, a good reproduction of the orbital densities is

important.

These orbital densities n (R, z; E, J, I3) are functions of (R, z) for

each given orbit, defined for any set (E, J, I3). The orbital densities

for both potentials can be compared by measuring the fraction of

the mass that is located in the same place in both potentials. If the

total mass of every orbit is normalized to 1, and the cells surface is

constant over the grid, the mass fraction correctly located (MC)

can be calculated as

MC � 1 2 dM � 1 2
X
k;`

j�nor�Rk; z`�2 nS�Rk; z`��j=2: �1�

In this, dM is the mass fraction that is not located in the same cell

in both potentials, nor stands for the original density, and nS stands

for the density associated with the StaÈckel potential. Double

counting is avoided by dividing the sum by 2.

To calculate this, each orbit determined by a given set (E, J, I3),

is integrated over a large number of periods, and its orbital density

n (R, z; E, J, I3) (normalized to 1) is computed. This is done on a

rectangular grid covering �Rmin�E; J�;Rmax�E; J�� � �0; zmax�E; J��,
by evaluating the time fraction spent in each cell.

In principle, the orbit should be integrated until the orbital

density reaches quasi-stationarity. This we may define by

demanding that during a given time interval the value n kl in

each cell (Rk, zl) has varied by less than some small fraction. In

practice, it takes an extremely long time to reach stationarity for

orbits close to a resonance m : n with m, n large, or having a

moderate degree of stochasticity ± these two cases being difficult

to distinguish (cf. Binney & Tremaine 1987, p. 176).

Also modelling based on the Schwarzschild method has to deal

with stationarity (see, e.g., Schwarzschild 1993 and Wozniak &

Pfenniger 1997). Since modelling aims at constructing equili-

brium models, only orbits for which the orbital density reaches

stationarity in limited time (i.e., less than a Hubble time) need in

principle to be taken into account. Accordingly, the non-stationary

orbital densities would not need to be precisely reproduced in the

StaÈckel potential.

(3) Conservation of I3: If locally a StaÈckel potential is a good
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approximation, the StaÈckel third integral I3 should be approxi-

mately constant along the regular orbits. Since the goal is to

provide a good approximation for an effective third integral for the

largest possible number of orbits, the variation on I3 should be

made as small as possible. If possible, fits on smaller domains will

be performed if this improves the approximation for the integral.

The approximation is evaluated through the maximal variation of

I3 along the orbit with respect to its initial value, d I3/I3.

On the other hand, one can argue that what really matters is a

nominal variation of I3, d I3/I3max(E, J): for a given (E, J), how

precise can our identification of orbits be when we estimate the

third integral of motion by I3 within [0, I3max(E, J)]? A related

question is how precise this identification should be or,

alternatively, how large is the tolerated variation on I3?

The StaÈckel potentials will be used as basis for a dynamical

model. One of the aims of these models is to reveal the role of the

third integral. Hence it is important to know that all structure

caused by the dependence on this third integral can be traced.

Consequently, the StaÈckel potential should be precise enough, so

that the uncertainty on the resulting approximation for I3 is not

larger than the scale of the smallest feature in I3 of the distribution

function. For example, in the limit where the dynamical model

would turn out to be essentially 2-integral, there would be no need

to set requirements on the constancy of I3.

This makes determining the maximum tolerance for errors in

the fit to the potential an iterative process, which includes the

modelling of the galaxy. First, a fit to the potential has to be

obtained, and a model has to be constructed with that potential.

The results of the model will then indicate whether the error on I3

was small enough or not.

(4) Topology of the orbits: As pointed out by Gerhard & Saha

(1991), approximate conservation of I3 along orbits alone does not

ensure that I3 provides a correct labelling for orbits (see also de

Zeeuw & Merritt 1983). One still needs to check that the topology

of orbital tori is similar to that of constant (E, J, I3) surfaces: for

then each orbit may be uniquely associated with one value of I3.

This is done by comparing surfaces of section for orbits in the

original potential, and I3 � constant curves for given (E, J).

3 H OW T O O B TA I N A S TAÈ C K E L P OT E N T I A L

The fitting procedure is derived from a deprojection method for

triaxial systems presented in a paper by Mathieu & Dejonghe

(1996). In that paper, a family of potential-density pairs is

presented that can be used as building blocks for triaxial mass

models. The spatial mass density and the potential can be both

expressed in terms of the same basis functions.

Using this method, it would technically be possible to obtain a

StaÈckel approximation in two ways: (1) fitting the spatial mass

density (2) fitting the potential.

The first way is not ideally suited for performing local fits,

since the calculation of a local value for the potential requires an

integration of the density over the entire volume of the galaxy. In

the case of a fit in a restricted part of space, there is obviously no

control on the behaviour of the mass density at larger distances,

and this can have serious implications for the potential obtained

through integration. The correspondence between the forces

generated by the original and the fitted potential is likely to be

a more useful indication of the quality of the approximation than

the correspondence between the spatial densities. For a global fit,

on the other hand, it does make sense to construct a StaÈckel

potential through a fit on the spatial density.

The fitting procedure is based on a Quadratic Programming

method. The aim is to find a linear combination of basis functions

that provides a good approximation to the original function. When

fitting the potential, the basis functions are

F�t� � 2
GM

�d � t p�s : �2�

The basis functions and their coefficients are chosen by

minimizing the variable

x2 �
X
k;`

wk`�f original�rk; z`�2 f calculated�rk; z`��2; �3�

with k and ` an index covering the grid points in the domain S 0.
The weights wk` can be used to give different relative weights to

the points in the grid, and f stands for the function to fit.

In an ellipsoidal coordinate system 2g < n < 2a < l, with a
and g negative, and the focal distance D � ���������������ja 2 gjp

(de Zeeuw

1985), a StaÈckel potential can be written as

V�l; n� � glF�l� � gnF�n�; �4�
with F an arbitrary function [here corresponding to (2)] and

gl �
l� a

l 2 n
: �5�

We now present the relevant formulae from Mathieu &

Dejonghe (1996), adapted for an axisymmetric system, that lead

to an expression for the density in terms of the basic functions.

The expression for the axisymmetric density is

r�l; n� � g2
lc
0�l� � g2

nc
0�n� � 2glgnc�n; l�; �6�

where c [n , l] is the first-order divided difference of c :

c�n; l� � c�l�2 c�n�
l 2 n

; �7�

and c 0(l) is the derivative c [l , l].

The connection between c (t ) and F(t ) [like in (2)] is given by

2pGc�t� � 2�t� g�F 0�t�2 F�t� � 2
t� g

t� a
�F�t�2 F�2a��: �8�

The density can be expressed in terms of the basic functions by

means of a third-order divided difference:

r�l; n� � H�l; n; l; n�; �9�
with H(t ) defined as

H�t� � �t� a�2c�t�; �10�
with c (t ) given in (8).

The divided difference of order n 2 1 of a function G(t ) is a

function of the divided difference of order n 2 2, and is given by

G�t1;¼; tn� � G�t1; t3;¼; tn�2 G�t2; t3;¼; tn�
t1 2 t2

: �11�

4 T H R E E T E S T P OT E N T I A L S

We build a smooth flattened model by combining a few spherical

harmonics Y0
l �u� (Binney & Tremaine 1987), as follows:

r�r; u� � C�r0�r�Y0
0�u;f� � br2�r�Y0

2�u;f� �
jbj
5

r4�r�Y0
4�u;f��;

�12�
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r0�r� �
1

�1� r2�2 ; �13�

r2�r� �
r2

�1� r2�3 ; �14�

r4�r� � r2�r�: �15�
b is a parameter which determines the flattening (b , 0 for oblate

systems). We set C � 2=�p ����
p
p � for a total mass equal to 1. This

simple choice for the model ensures r / r24 and a fairly constant

flattening. The resulting density for b � 20:3 is shown in Fig. 3.

It is nearly ellipsoidal, with axis ratio b=a . 0:8. We will in the

following refer to the corresponding potential as Cell.

The corresponding potential is

cell�r; u� � 24pGC�c0�r�Y0
0�u;f� � bc2�r�Y0

2�u;f�

� jbj
5

c4�r�Y0
4�u;f��; �16�

where the f l are related to the r l terms by equation (2-122) in

Binney & Tremaine (1987).

As explained in Section 2, we use a grid in integral space that

defines the domains for the fit. The grid contains 16 points in E

(noted Ei), seven points in J (noted Ji) and seven angles v i.

For each of the domains, a fit can be produced, based on the x2

of equation (3), if the focal distance D is set. The choice of D of

the spheroidal coordinate system affects the quality of the fit. An

average D is obtained by computing a number of orbits in the

original potential, and evaluating the focal distance for which

sections of the l � constant ellipses most closely follow the inner

and outer envelopes Rmin(z), Rmax(z) of the orbits. Of course, there

is more variation in D for the more extended domains S 0.
We started with a global fit for the potential Cell, i.e., a fit in the

largest domain S 0 (extending to about 180 in R and in z),

corresponding to the orbits that have (E16,0). We take J � 0

instead of J1 in order to avoid the possibility that orbits with

smaller E might not be covered by the potential because their

J , �J1�E16
.

This combination (E16,0) is obviously the most unfavourable for

the fit, and the variations in I3 are expected to set a standard for the

worst case: the maximum (d I3)max for all seven orbits with

different v i is taken as the maximum tolerable variation. We

demand that the variation of I3 along the orbits with lesser spatial

extent (i.e., E 0 . E16; J 0 . 0 and the 7 v i, with (E 0, J 0) on the grid

in integral space) is not worse than this. In this case, it turns out

that the variation on I3 is larger for orbits with (E15, J1). Thus the

next fit is done in the domain S 0 determined by (E15, 0).

After this fit, (d I3)max is the error on I3 for the orbits with

(E15, J1), and this new value is now used to decide on the next fit.

In this way, fits are done in the domains corresponding to (E16, 0),

(E15, 0), (E14, 0), (E11, 0), (E2, 0) and (E1, 0).

If the correspondence between the orbits in a fitted and original

potential happens to be very bad, it could be due to a poor

correspondence between the force components of both potentials.

Therefore, prior to the calculation of the orbits, it is useful to

check the behaviour of the force components in the fitted and the

original potential. Fig. 4 shows the contours for the force

components generated by Cell (full lines) with the StaÈckel

potential for the domain S 0(E11, 0) (dashed lines) in overlay.

Since the force components in both potentials do not appear too

different, it is sensible to proceed with the comparison of

integrated orbits.

In Fig. 5 the points in the (E, J)-grid for Cell are displayed as an

example of how a set of potentials can be built; different symbols

indicate the different potentials used. As can be seen from the

different symbols, some potentials of the set are used for a small

number of orbits, while others are used for a large number of

orbits. The fact that the potential fitted in the largest domain is

used only for orbits with only one value for E (indicated by the

pluses) suggests that this method can really improve the

approximation. Also the orbits that remain close to the centre

seem to require a potential fitted in a limited part of space.

As a second trial case, a boxy density, with potential Cbox, is

obtained from a combination of harmonics as described in equations

(12) and (16) with b � 20:5, and has an axis ratio b=a . 0:6. The

contours are shown in Fig. 6. We also used a 16E � 7J � 7I3
grid

and approximated Cbox with a set of eight StaÈckel potentials.

Also a Miyamoto±Nagai (MN) potential with intermediate

flattening, b=a , 0:7, is taken as trial potential. MN models

exhibit very strong disciness in the density contours, as can be seen

in Fig. 7. This means that we are considering a difficult case, that is

actually on the verge of being unrealistic for elliptical galaxies.

The grid has the same dimensions as the one described in the

previous section. The MN potential is approximated with eight

potentials, and the set of StaÈckel potentials is constructed

following the same strategy.
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Figure 3. The spatial density, with its axis ratio, and potential

corresponding to Cell, given by the sum of harmonics given in equations

(12) and (16), with b � 20:3.

Figure 4. The contours for the two force components generated by Cell

(full lines) and the StaÈckel potential for the domain S 0 (11,0) (dashed

lines).
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5 P R E S E N TAT I O N O F T H E R E S U LT S

5.1 Surfaces of section

Typical surfaces of section display (R, vR) at z � 0, for the orbits

having vz . 0 when they cross the equatorial plane or display

(z, vz) for vR � 0, and for those orbits having vR . 0 just after

crossing.

The SoSs immediately tell us that for the three potentials, all

orbits of our phase-space grid have an effective third integral.

Stochasticity, if present, was mild and would have required very

long integrations to be visible on the SoSs. We did not carry out

such integrations, because the SoSs were only meant as a

preliminary check. In practice, anyway, mildly stochastic orbits

behave very much like regular orbits, and we can hope to

approximate them by an orbit in a StaÈckel potential.

For cell and cbox, all orbits in our library have similar SoSs in

both potentials. There is no evidence for stochasticity, nor for

unrecovered minor families. For the MN potential, all orbits also

appear as regular, but we found a few unrecovered minor orbital

families.

Most of the orbits trapped around resonant tube orbits ± what

we called `minor orbital families' in Section 2.3 ± were present in

the local StaÈckel potential.

in Fig. 8 SoSs of a few orbits are displayed for the MN potential

(small dots) and the StaÈckel potential (large dots). Both panels

show a `minor resonance' evidenced by small `islands'. In the left-

hand panel, showing orbits with large I3, the orbits trapped around

minor resonances are well reproduced within the StaÈckel potential.

The right-hand panel displays orbits with smaller I3. Two orbits

are trapped around a 1:1 resonance which does not exist in the

StaÈckel potential. They are examples of unrecovered minor orbital

families. They are always found for small values of I3. Therefore

they correspond to orbits remaining close to the equatorial plane,

where the MN potential is very much distorted by a strong

disciness.

Even for such extreme `disciness', these orbits only represent

,1 per cent of the orbit library for MN. These obviously are orbits

that we will not be able to take into account when building a

model that uses StaÈckel potentials. Although the unrecovered

minor families are only a small fraction of the entire orbital

library, we will exclude them from the statistics of the other

checks discussed hereafter. As such, we are not taking those

orbital families into account that no one expects to be

approximated by a StaÈckel potential.
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Figure 6. The spatial density, its axial ratio and the potential

corresponding to CBox, given by the sum of harmonics given in equations

(12) and (16), with b � 20:5.

Figure 7. The spatial density, its axial ratio and the potential for a

Miyamoto±Nagai potential with b=a , 0:7. The contours for the spatial

density are strongly discy.

Figure 5. The (E, J)-grid for Cell, with different symbols for different

potentials. We used a set of six StaÈckel potentials to approximate the

original potential.
Figure 8. Surfaces of section for typical orbits in the MN potential (small

dots) and the StaÈckel potential (large dots).
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5.2 Orbital weights

For every orbit, the conserved mass fraction MC is calculated

following equation (1), using a 20 � 20 grid in (R, z). We integrate

each orbit for at least 50TV, and at most 200TV. We check every

50TV whether quasi-stationarity has been reached. Quasi-statio-

narity is assumed when for every cell the orbital density has varied

by less than 1 per cent in 50TV.

The results are presented in Fig. 9, which gives the cumulative

distribution for MC, the fraction of mass `correctly located' in the

orbital densities. A few orbital densities for MN have

MC , 60 per cent; these correspond to minor resonances that

were not fitted by our StaÈckel potentials. Excluding those, the

average MC is 99 per cent for Cell, 98 per cent for Cbox, and 95 per

cent for MN.

5.3 How constant is the StaÈckel I3?

For every potential, the conservation of I3 along the orbits

is estimated by computing the relative variation dr ;
dI3�E; J; I3�=I3�E; J; I3�: At given (E, J), the maximum of this

quantity is derived among orbits with different I3: dr
max ;

maxi�1;7�dI3�E; J; I3;i�=I3�E; J; I3;i��:
Fig. 10 shows how log�dr

max� is affected as more potentials are

added to the set approximating cell.

The black dots represent the E �J � 0� of the domain S 0 where

the potentials are fitted. Dark grey shades represent small

variations on I3, and light grey shades represent larger variations.

For each new local potential that is considered, a number of

previously void cells of the (E, J) grid are filled and a number of

values are replaced by new ones. It is clear that adding new

potentials to the set improves the conservation of the third integral

along the orbits, and the difference between the global fit (upper

left panel of Fig. 10) and the results of the complete set (lower

right panel) is remarkable.

In the left-hand panels of Fig. 11 we present histograms of d r

for from top to bottom: cell, cbox and MN. For the MN potential,

the resonances absent from the StaÈckel approximation are not

considered, a complete orbital library contains 784 orbits.

The average for d r is 2 per cent for cell, while 75 per cent of the

orbits have dr , 1:7 per cent. For cbox, the average for d r is

,2:6 per cent and 75 per cent of the orbits have dr , 2:7 per cent.

For MN, the average value is ,10 per cent, and 75 per cent of the

orbits have dr , 12 per cent. The variation of d r along each orbit

is of the order of the fitting error on the derivatives of the

potential.
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Figure 10. The evolution in log(d r) as more potentials are added to the set of StaÈckel potentials approximation Cell. The black dots indicate the E of the

domain where the potentials were fitted (J � 0 for all six potentials). Dark (light) grey shades represent small (large) variations on I3.

Figure 9. Cumulative distribution for the fraction of mass `correctly

located' in the orbital densities. The full line is for Cell, the dotted line is

for Cbox, and the dashed line is for MN.
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In the middle panels of Fig. 11 the results in terms of a nominal

variation dn ; �dI3�E; J; I3�=I3max�E; J�� are shown. For the nearly

ellipsoidal potential Cell, 75 per cent of the orbits have

dn , 0:3 per cent, with an average value of ,0:2 per cent. For

Cbox, the average is ,0:7 per cent, while 75 per cent of the orbits

have dn , 1 per cent. For MN, the average value is ,1:7 per cent,

and 75 per cent of the orbits have a nominal error on I3 less than

2.3 per cent.

Dehnen & Gerhard (1993) used a similar indicator, but they

normalized d I3 to I3max(E), which gives smaller values for the

nominal variation, as can be seen in the right-hand panels of Fig. 11.

The averages for Cell, Cbox and MN are 0.1, 0.5 and 1.3 per cent

respectively.

5.4 Topology of constant I3 varieties

We plot on the same graph (Fig. 12): (i) the (R, RÇ ) SoS of orbits as

they cross the z � 0 plane (with _z . 0) in the original potential;

and (ii) the invariant curves defined by I3 � constant (at z � 0).

This is shown here for some intermediate value of E (E4 of our

grid) and J � 0. Radial orbits are in principle difficult to map,

because of the transition between loop and box orbits (see Gerhard

& Saha 1991). They are, however, very well described here, both

for Cell and for Cbox. The agreement is somewhat poorer in the

case of MN for the transition region between box and loop

orbits; however, the topology is still correctly described, in the

sense that we can establish a one-to-one correspondence between

the two sets of curves. This shows that I3 may be used to label the

orbits.

6 D I S C U S S I O N

For the construction of dynamical models, the use of StaÈckel

potentials yields a number of advantages, amongst them (1) the

property that the density and dynamical moments can be

calculated analytically, and (2) the absence of regularisation

problems. Finally, once the dynamical model has been completed,

the distribution function is known in an easy-to-use and analytical

form. Although these models require a special form of the

potential, they offer a great flexibility during the further modelling

process. In a StaÈckel potential there is a function of one variable

that can be freely chosen. This freedom is advantageous, and can,

of course, be exploited at the fullest when performing a fit to the

galaxy potential.

Analogous to local StaÈckel potentials, dynamical models built

within this approximation will yield local distribution functions,

simply because we have adapted the coordinate systems in each

domain S where a local StaÈckel potential is constructed. The use

of a QP-method (Dejonghe 1989) for dynamical modelling gives a

q 2000 RAS, MNRAS 311, 297±306

Figure 11. Histograms of d r in the left-hand panels, of dn [i.e., dI3

normalized to I3max(E, J)] in the middle panels, and of dI3 normalized to

I3max(E) in the right-hand panels.

Figure 12. Comparison of SoSs and I3 level curves at given �E4; J � 0�,
for Cell (top panel), Cbox (middle panel), and MN (bottom panel). Dots:

surfaces of section (R, RÇ ) at z � 0 with _z . 0. Lines: the intersection of

I3 � constant surfaces with the z � 0 plane.
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large freedom for the basis functions. In this case, we can use

basis functions for the distribution function that contribute only in

limited parts of integral space. In practice, these limited parts will

correspond to the rectangles R from the local potentials.

The fact that the space of StaÈckel potentials has measure zero in

the space of all axisymmetric potentials, raises the obvious

concern whether StaÈckel potentials are suitable for the representa-

tion of any galaxy potential.

The scientific objections cluster around the following arguments:

(1) `What about central cusps?' Indeed, central density cusps

generally cannot be generated by a StaÈckel potential in an

ellipsoidal coordinate system. However, Sridhar & Touma (1997)

showed that a StaÈckel potential in parabolic coordinates can create

a central cusp. Whether these potentials can be used in the scheme

we propose here remains to be investigated. On the other hand, it

may well be possible that there is no point in providing a good

approximation to the third integral in regions where the cuspiness

of the density becomes important. Indeed, it is likely that the

central density cusps are related to the presence of a central

massive object (see, e.g., the reviews by Kormendy & Richstone

1995 and Richstone et al. 1998). This may cause a higher fraction

of ergodic orbits over a Hubble time. Such orbits will fill regions

of phase-space where the distribution function depends essentially

on the energy, or, for less ergodic regions, also on angular

momentum (cf. Merritt 1999). The fraction of regular to ergodic

motion in a real galaxy stands as a major unknown. The most

popular scenario at the moment is that ergodicity has gradually

been introduced in the system, as orbits that pass close to the

central mass concentration were perturbed by it (Gerhard &

Binney 1985; Valluri & Merritt 1998). One may then suppose that

the original orbital tori which have not been disrupted still

underlie most of the features in phase-space, with essentially

homogeneous 6D density between them.

(2) `Does a StaÈckel approximation allow an accurate fit to a

typical galactic potential?' As has been already noticed for some

time, the main orbit families found by numerical integration in

general triaxial potentials are present in a StaÈckel potential

(Schwarzschild 1979; de Zeeuw 1985), but obviously there is no

place in an integrable potential for smaller orbital families nor

stochastic orbits. These minor orbital families appear to occupy

only a small volume fraction of phase-space, as long as figure

rotation is unimportant (Gerhard 1985; Binney 1987) In practice,

StaÈckel potentials do turn out to provide reasonably good global

fits for systems without central mass concentration (Dejonghe

et al. 1996) or for regions beyond the influence of the central mass

concentration (Emsellem, Dejonghe & Bacon 1999). It is true that

the use of one single StaÈckel potential assumes a single confocal

system where the streamlines of the mean stellar motion coincide

with the coordinate lines of the ellipsoidal coordinate system.

Hence the construction of such a single StaÈckel potential inevit-

ably involves some sort of averaging (de Zeeuw & Lynden-Bell

1985; Dejonghe & de Zeeuw 1988), and is not always considered

to be a sufficiently general approach (at least in triaxial cases; see

Binney 1987 and Merritt & Fridman 1996). However, the use of

confocal streamlines seems to be a valid assumption for individual

orbits (Anderson & Statler 1998). Moreover, studying logarithmic

potentials, those authors find that the mean velocities can be well

fitted using local coordinate systems with confocal coordinate

lines, with the focal distances taken within a fairly narrow range.

Our approach allows us to carry this idea one step further, on the

level of the distribution function.

7 C O N C L U S I O N S

In this paper we present an extension of the available approxima-

tions for the effective third integral in axisymmetric systems,

obtained by using a set of StaÈckel potentials as representation for a

galaxy potential, instead of one single StaÈckel potential. We have

studied the feasibility and effectiveness of this method.

The creation of a set of local StaÈckel potentials is done through

a fit on the system potential. There is a large freedom in the choice

of the domains where the local fits are done and the composition

of the set of StaÈckel potentials. The set of approximating local

potentials can be extended until the desired precision is obtained.

We have tested the method on three potentials: (A) a harmonical

potential (Cell) that behaves very smoothly with a nearly

ellipsoidal density; (B) a harmonical potential (Cbox) with a

boxy density; and (C) a Miyamoto±Nagai (MN) model with a

density that has an exaggerated discy structure.

As one may expect, the model with smallest disciness/boxiness

is easiest to approximate using sets of StaÈckel potentials.

However, what really motivates this study is to check the estimate

made for the effective third integral, if we approximate it by the

third integral I3 that the StaÈckel potentials define.

The quality of the approximation is checked in several ways: (1)

surfaces of section, that reveal possible resonances and irregular

orbits, (2) conservation of orbital weights, which is important for

the reconstruction of the spatial density, (3) conservation of I3

along the orbits, in order to validate the labelling of orbits, and (4)

topology of the orbital space. The conservation of orbital weights

and the conservation of I3 are the criteria that can be best

expressed numerically.

According to the expectations, the approximation of Cell has

orbits that are very similar to the orbits in the original potential, as

can be judged from the surfaces of section and the topology. The

results for the conservation of orbital weights (an average of

99 per cent for Cell) and I3 �dr ; dI3�E; J; I3�=I3�E; J; I3� , 2 per

cent and dn ; �dI3�E; J; I3�=I3max�E; J�� , 0:2 per cent for Cell)

confirm the quality of the approximation.

The method also proves to be successful for Cbox, with an

average of 98 per cent for the conservation of orbital weights,

dr , 2:6 per cent and dn , 0:7 per cent. The SoSs and the

topology of the orbits also confirm this good result.

The success of the method on the MN potential is somewhat

less, because of the strong disciness. Still, using a small set of

StaÈckel potentials, we are able to reproduce most orbits with

satisfactory accuracy, except for a few resonances. The resonances

that are not reproduced by the set of StaÈckel potentials all have

small values of I3, i.e., the orbits lie in the region where the

disciness is important. Leaving these resonances out of considera-

tion, the orbital weights seem to be well conserved (on average

95 per cent for MN), and the topology of the orbits is well

reproduced. Also for these potentials, the StaÈckel I3 can be used as

labels for the orbits (dr , 10 per cent and dn , 1:7 per cent). The

potentials of observed elliptical galaxies are generally rounder

than the strongly discy MN models.

Given the positive results found for the three rather different

models considered, it seems to be possible, using a reasonable

number of local StaÈckel potentials, to provide good approxima-

tions for a third integral, suitable for labelling orbits in dynamical

models.

With respect to existing approximations for a third integral in

axisymmetric systems, the advantage of this new one is mainly

that, while it can be envisaged for application to systems with
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arbitrary flattening, it also yields a simple analytic expression for

the approximate third integral locally. This method will be fully

exploited if it is used to build, for roughly axisymmetric galaxies,

explicit distribution functions that depend on three integrals.
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